
Konstantinos Ameranis, August 4

Wrap Up
CS143: lecture 18

A Von Neumann Machine

CPU

Memory Unit

Input/Output

A new perspective...

A new perspective...

• Variables (data) and functions (code) live in memory

A new perspective...

• Variables (data) and functions (code) live in memory
• Memory is a contiguous storage of bytes

A new perspective...

• Variables (data) and functions (code) live in memory
• Memory is a contiguous storage of bytes
• Each byte has an address -- variables and functions have addresses

A new perspective...

• Variables (data) and functions (code) live in memory
• Memory is a contiguous storage of bytes
• Each byte has an address -- variables and functions have addresses

• When executing a program, CPU fetches an instruction from memory and performs
actions:

A new perspective...

• Variables (data) and functions (code) live in memory
• Memory is a contiguous storage of bytes
• Each byte has an address -- variables and functions have addresses

• When executing a program, CPU fetches an instruction from memory and performs
actions:
• Read (n bytes) from an address to a register, write (n bytes) to an address to a register

A new perspective...

• Variables (data) and functions (code) live in memory
• Memory is a contiguous storage of bytes
• Each byte has an address -- variables and functions have addresses

• When executing a program, CPU fetches an instruction from memory and performs
actions:
• Read (n bytes) from an address to a register, write (n bytes) to an address to a register
• Manipulate the bits in registers -- computation

A new perspective...

• Variables (data) and functions (code) live in memory
• Memory is a contiguous storage of bytes
• Each byte has an address -- variables and functions have addresses

• When executing a program, CPU fetches an instruction from memory and performs
actions:
• Read (n bytes) from an address to a register, write (n bytes) to an address to a register
• Manipulate the bits in registers -- computation
• Jump to another instruction, check for conditions, ...

A new perspective...

• Variables (data) and functions (code) live in memory
• Memory is a contiguous storage of bytes
• Each byte has an address -- variables and functions have addresses

• When executing a program, CPU fetches an instruction from memory and performs
actions:
• Read (n bytes) from an address to a register, write (n bytes) to an address to a register
• Manipulate the bits in registers -- computation
• Jump to another instruction, check for conditions, ...

• The compiler clang translates your C program into these instructions

A new perspective...

A new perspective...

• A process's memory is partitioned into

A new perspective...

• A process's memory is partitioned into
• The stack: the compiler uses this to manage local variables. Stack frames come and

go as functions are called and return

A new perspective...

• A process's memory is partitioned into
• The stack: the compiler uses this to manage local variables. Stack frames come and

go as functions are called and return
• The heap: you use this to store data with complicated lifetime

A new perspective...

• A process's memory is partitioned into
• The stack: the compiler uses this to manage local variables. Stack frames come and

go as functions are called and return
• The heap: you use this to store data with complicated lifetime
• ptr = malloc(n);

A new perspective...

• A process's memory is partitioned into
• The stack: the compiler uses this to manage local variables. Stack frames come and

go as functions are called and return
• The heap: you use this to store data with complicated lifetime
• ptr = malloc(n);

• free(ptr);

A new perspective...

• A process's memory is partitioned into
• The stack: the compiler uses this to manage local variables. Stack frames come and

go as functions are called and return
• The heap: you use this to store data with complicated lifetime
• ptr = malloc(n);

• free(ptr);

• One malloc, one free

A new perspective...

• A process's memory is partitioned into
• The stack: the compiler uses this to manage local variables. Stack frames come and

go as functions are called and return
• The heap: you use this to store data with complicated lifetime
• ptr = malloc(n);

• free(ptr);

• One malloc, one free
• Code, global variables, string literals ...

A new perspective...

• A process's memory is partitioned into
• The stack: the compiler uses this to manage local variables. Stack frames come and

go as functions are called and return
• The heap: you use this to store data with complicated lifetime
• ptr = malloc(n);

• free(ptr);

• One malloc, one free
• Code, global variables, string literals ...

• Virtual memory: OS gives each process its own memory address space (0 -- FFFFFFF...)

A new perspective...

A new perspective...

• Data and code are just bits

A new perspective...

• Data and code are just bits

• A bit answers a yes/no question -- we specify what the questions are by
agreeing on an encoding

A new perspective...

• Data and code are just bits

• A bit answers a yes/no question -- we specify what the questions are by
agreeing on an encoding

• Unsigned integer encoding -- each bit indicates the presence of a power of
2

A new perspective...

• Data and code are just bits

• A bit answers a yes/no question -- we specify what the questions are by
agreeing on an encoding

• Unsigned integer encoding -- each bit indicates the presence of a power of
2

• Signed integer encoding (2's complement) -- the highest bit is negative

A new perspective...

• Data and code are just bits

• A bit answers a yes/no question -- we specify what the questions are by
agreeing on an encoding

• Unsigned integer encoding -- each bit indicates the presence of a power of
2

• Signed integer encoding (2's complement) -- the highest bit is negative

• We can come up with our own encodings (e.g. student record)

A new perspective...

• Data and code are just bits

• A bit answers a yes/no question -- we specify what the questions are by
agreeing on an encoding

• Unsigned integer encoding -- each bit indicates the presence of a power of
2

• Signed integer encoding (2's complement) -- the highest bit is negative

• We can come up with our own encodings (e.g. student record)

• Types are used to keep track of the encodings

A new perspective...

A new perspective...

• Statically, we can organize data...

A new perspective...

• Statically, we can organize data...

• ... of different types into a struct

A new perspective...

• Statically, we can organize data...

• ... of different types into a struct

• to represent a real-world object

A new perspective...

• Statically, we can organize data...

• ... of different types into a struct

• to represent a real-world object

• to group variables that are dependent (invariants)

A new perspective...

• Statically, we can organize data...

• ... of different types into a struct

• to represent a real-world object

• to group variables that are dependent (invariants)

• ... of the same type into an array

A new perspective...

• Statically, we can organize data...

• ... of different types into a struct

• to represent a real-world object

• to group variables that are dependent (invariants)

• ... of the same type into an array

• to represent multiple instances of the same thing

A new perspective...

• Statically, we can organize data...

• ... of different types into a struct

• to represent a real-world object

• to group variables that are dependent (invariants)

• ... of the same type into an array

• to represent multiple instances of the same thing

• to apply the same action repeatedly

A new perspective...

• Statically, we can organize data...

• ... of different types into a struct

• to represent a real-world object

• to group variables that are dependent (invariants)

• ... of the same type into an array

• to represent multiple instances of the same thing

• to apply the same action repeatedly

• Compiler translates structs and arrays access into direct memory access

A new perspective...

A new perspective...

• Dynamically, we can organize data as:

A new perspective...

• Dynamically, we can organize data as:
• list: an ordered sequence

A new perspective...

• Dynamically, we can organize data as:
• list: an ordered sequence
• If we use pointers to keep track of the order -- linked list

A new perspective...

• Dynamically, we can organize data as:
• list: an ordered sequence
• If we use pointers to keep track of the order -- linked list
• Easy to reorder, insert, delete, ...

A new perspective...

• Dynamically, we can organize data as:
• list: an ordered sequence
• If we use pointers to keep track of the order -- linked list
• Easy to reorder, insert, delete, ...

• If we use relative memory position to keep track of the order -- arraylist

A new perspective...

• Dynamically, we can organize data as:
• list: an ordered sequence
• If we use pointers to keep track of the order -- linked list
• Easy to reorder, insert, delete, ...

• If we use relative memory position to keep track of the order -- arraylist
• Easy to access specific element

A new perspective...

• Dynamically, we can organize data as:
• list: an ordered sequence
• If we use pointers to keep track of the order -- linked list
• Easy to reorder, insert, delete, ...

• If we use relative memory position to keep track of the order -- arraylist
• Easy to access specific element

• map: a collection of key-value pairs

A new perspective...

• Dynamically, we can organize data as:
• list: an ordered sequence
• If we use pointers to keep track of the order -- linked list
• Easy to reorder, insert, delete, ...

• If we use relative memory position to keep track of the order -- arraylist
• Easy to access specific element

• map: a collection of key-value pairs
• BST -- if the keys are ordered

A new perspective...

• Dynamically, we can organize data as:
• list: an ordered sequence
• If we use pointers to keep track of the order -- linked list
• Easy to reorder, insert, delete, ...

• If we use relative memory position to keep track of the order -- arraylist
• Easy to access specific element

• map: a collection of key-value pairs
• BST -- if the keys are ordered
• Hash Table -- if the keys can be converted to an integer -- need to handle collision

Topics Covered

Topics Covered

Memory:
• Variables and types

• Array

• Types

• Pointers

• Pass by reference

• Function frames

• Stack and Heap

Topics Covered

Memory:
• Variables and types

• Array

• Types

• Pointers

• Pass by reference

• Function frames

• Stack and Heap

Data structure:
• Array List

• Linked List

• Tree & BST

• Hash Table

• Max Heap

• Selection, insertion, 

bubble sort

• Tree sort, heap sort,

• Counting sort

Topics Covered

Memory:
• Variables and types

• Array

• Types

• Pointers

• Pass by reference

• Function frames

• Stack and Heap

Data structure:
• Array List

• Linked List

• Tree & BST

• Hash Table

• Max Heap

• Selection, insertion, 

bubble sort

• Tree sort, heap sort,

• Counting sort

Bits:
• Bitwise operations

• Integer representation

• Bit-packing

• Masks

• Binary and hex

• Endianness

Topics Covered

Memory:
• Variables and types

• Array

• Types

• Pointers

• Pass by reference

• Function frames

• Stack and Heap

Data structure:
• Array List

• Linked List

• Tree & BST

• Hash Table

• Max Heap

• Selection, insertion, 

bubble sort

• Tree sort, heap sort,

• Counting sort

Bits:
• Bitwise operations

• Integer representation

• Bit-packing

• Masks

• Binary and hex

• Endianness

Other:
• Threads

• Virtual memory

• Dynamic dispatch

• Terminal

• Git

• Compiler

• Makefile

• Valgrind

• Machine structure

Review
C

Review
C

• All operators:

Review
C

• All operators:

• Unary: !x ~x -x x++ ++x x-- --x

Review
C

• All operators:

• Unary: !x ~x -x x++ ++x x-- --x

• Binary:

Review
C

• All operators:

• Unary: !x ~x -x x++ ++x x-- --x

• Binary:

• Arithmetic: x + y, x - y, x * y, x / y (two kinds), x % y,

Review
C

• All operators:

• Unary: !x ~x -x x++ ++x x-- --x

• Binary:

• Arithmetic: x + y, x - y, x * y, x / y (two kinds), x % y,

• Comparison: x == y, x != y, x > y, x < y, x >= y, x <= y

Review
C

• All operators:

• Unary: !x ~x -x x++ ++x x-- --x

• Binary:

• Arithmetic: x + y, x - y, x * y, x / y (two kinds), x % y,

• Comparison: x == y, x != y, x > y, x < y, x >= y, x <= y

• Bitwise: x & y, x | y, x ^ y, x << y, x >> y

Review
C

• All operators: (Cont.)

• Pointers: *a, &a

Pointers
Review

type : int *

value: 100

100 int x

25

&x
108 int * x_p

100

type : int

value: 25

*x_p

type : int *

value: 100

type : int

value: 25

&x_p

type : int *

value: 100

type : int **

value: 108

*x

type : int

value: 25

error

Review
C

• All operators: (Cont.)

• Pointers: *a, &a

Review
C

• All operators: (Cont.)

• Pointers: *a, &a

• Subscript and member:

Review
C

• All operators: (Cont.)

• Pointers: *a, &a

• Subscript and member:

• a.field

Review
C

• All operators: (Cont.)

• Pointers: *a, &a

• Subscript and member:

• a.field

• a[b] is a short hand of *(a + b)

Review
C

• All operators: (Cont.)

• Pointers: *a, &a

• Subscript and member:

• a.field

• a[b] is a short hand of *(a + b)

• a->field is a short hand of (*a).field

Review
C

• All operators: (Cont.)

• Pointers: *a, &a

Review
C

• All operators: (Cont.)

• Pointers: *a, &a

• Subscript and member: a.field, a[b], a->field

Review
C

• All operators: (Cont.)

• Pointers: *a, &a

• Subscript and member: a.field, a[b], a->field

• Ternary conditional: a ? b : c (In Python: b if a else c)

Review
C

• All operators: (Cont.)

• Pointers: *a, &a

• Subscript and member: a.field, a[b], a->field

• Ternary conditional: a ? b : c (In Python: b if a else c)

• Type cast: (type) x

Bits
Endian

Bits
Endian

• We think of an integer as one atomic value:

Bits
Endian

• We think of an integer as one atomic value:
• int x = 0x1A2B3C4D;

Bits
Endian

• We think of an integer as one atomic value:
• int x = 0x1A2B3C4D;

• But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

Bits
Endian

• We think of an integer as one atomic value:
• int x = 0x1A2B3C4D;

• But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

1A 2B 3C 4D

0 1 2 3

Bits
Endian

• We think of an integer as one atomic value:
• int x = 0x1A2B3C4D;

• But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

1A 2B 3C 4D

0 1 2 3

4D 3C 2B 1A

0 1 2 3

Bits
Endian

• We think of an integer as one atomic value:
• int x = 0x1A2B3C4D;

• But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

1A 2B 3C 4D

0 1 2 3

4D 3C 2B 1A

0 1 2 3

Most significant
byte first

Bits
Endian

• We think of an integer as one atomic value:
• int x = 0x1A2B3C4D;

• But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

1A 2B 3C 4D

0 1 2 3

4D 3C 2B 1A

0 1 2 3

Most significant
byte first

Least significant
byte first

Bits
Endian

• We think of an integer as one atomic value:
• int x = 0x1A2B3C4D;

• But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

1A 2B 3C 4D

0 1 2 3

4D 3C 2B 1A

0 1 2 3

Big-endian --> Most significant
byte first

Least significant
byte first

Bits
Endian

• We think of an integer as one atomic value:
• int x = 0x1A2B3C4D;

• But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

1A 2B 3C 4D

0 1 2 3

4D 3C 2B 1A

0 1 2 3

Big-endian -->

Little-endian -->

Most significant
byte first

Least significant
byte first

Bits
Endian

int main(void)

{

 int x = 0x1A2B3C4D;

 char *ptr = (char *) &x;

 for (int i = 0; i < 4; ++i) {

 printf("0x%hhx\n", ptr[i]);

 }

 return 0;

}

Review
Function Frames

• When a function returns, we can recycle the memory used by the variables
declared inside the function.

• Variables declared in { .. } can only be accessed in { .. } (Scope)

Review
Function Frames

• When a function returns, we can recycle the memory used by the variables
declared inside the function.

• Variables declared in { .. } can only be accessed in { .. } (Scope)

• Local variables and arguments live in a frame.

Variable Lifetime

int f(int x)

{

 int y = x * 2;

 return y;

}

int main(void)

{

 int a = f(10);

 int b = f(a);

 printf("%d\n", b);

 return 0;

}

Variable Lifetime

int f(int x)

{

 int y = x * 2;

 return y;

}

int main(void)

{

 int a = f(10);

 int b = f(a);

 printf("%d\n", b);

 return 0;

}

b: ??

a: ??
m
a
i
n

Variable Lifetime

int f(int x)

{

 int y = x * 2;

 return y;

}

int main(void)

{

 int a = f(10);

 int b = f(a);

 printf("%d\n", b);

 return 0;

}

y: ??

x: 10

b: ??

a: ??
m
a
i
n

f

Variable Lifetime

int f(int x)

{

 int y = x * 2;

 return y;

}

int main(void)

{

 int a = f(10);

 int b = f(a);

 printf("%d\n", b);

 return 0;

}

y: 20

x: 10

b: ??

a: ??
m
a
i
n

f

Variable Lifetime

int f(int x)

{

 int y = x * 2;

 return y;

}

int main(void)

{

 int a = f(10);

 int b = f(a);

 printf("%d\n", b);

 return 0;

}

y: 20

x: 10

b: ??

a: 20
m
a
i
n

f

Variable Lifetime

int f(int x)

{

 int y = x * 2;

 return y;

}

int main(void)

{

 int a = f(10);

 int b = f(a);

 printf("%d\n", b);

 return 0;

}

b: ??

a: 20
m
a
i
n

Variable Lifetime

int f(int x)

{

 int y = x * 2;

 return y;

}

int main(void)

{

 int a = f(10);

 int b = f(a);

 printf("%d\n", b);

 return 0;

}

y: ??

x: 20

b: ??

a: 20
m
a
i
n

f

Variable Lifetime

int f(int x)

{

 int y = x * 2;

 return y;

}

int main(void)

{

 int a = f(10);

 int b = f(a);

 printf("%d\n", b);

 return 0;

}

y: 40

x: 20

b: ??

a: 20
m
a
i
n

f

Variable Lifetime

int f(int x)

{

 int y = x * 2;

 return y;

}

int main(void)

{

 int a = f(10);

 int b = f(a);

 printf("%d\n", b);

 return 0;

}

y: 40

x: 20

b: 40

a: 20
m
a
i
n

f

Variable Lifetime

int f(int x)

{

 int y = x * 2;

 return y;

}

int main(void)

{

 int a = f(10);

 int b = f(a);

 printf("%d\n", b);

 return 0;

}

b: 40

a: 20
m
a
i
n

Variable Lifetime

int f(int x)

{

 int y = x * 2;

 return y;

}

int main(void)

{

 int a = f(10);

 int b = f(a);

 printf("%d\n", b);

 return 0;

}

The Heap

m
a
i
n

.
.
.

The Stack

The Heap

The Heap
Stack vs Heap

Stack Heap

The Heap
Stack vs Heap

• Acquire memory:• Acquire memory:
Stack Heap

The Heap
Stack vs Heap

• Acquire memory:• Acquire memory:
• declare variables

Stack Heap

The Heap
Stack vs Heap

• Acquire memory:
• ptr = malloc(n)

• Acquire memory:
• declare variables

Stack Heap

The Heap
Stack vs Heap

• Acquire memory:
• ptr = malloc(n)

• Acquire memory:
• declare variables
• size: compiler calculates before

running (static)

Stack Heap

The Heap
Stack vs Heap

• Acquire memory:
• ptr = malloc(n)

• size: you provide during running
(dynamic)

• Acquire memory:
• declare variables
• size: compiler calculates before

running (static)

Stack Heap

The Heap
Stack vs Heap

• Acquire memory:
• ptr = malloc(n)

• size: you provide during running
(dynamic)

• Release memory:

• Acquire memory:
• declare variables
• size: compiler calculates before

running (static)
• Release memory:

Stack Heap

The Heap
Stack vs Heap

• Acquire memory:
• ptr = malloc(n)

• size: you provide during running
(dynamic)

• Release memory:

• Acquire memory:
• declare variables
• size: compiler calculates before

running (static)
• Release memory:
• do nothing

Stack Heap

The Heap
Stack vs Heap

• Acquire memory:
• ptr = malloc(n)

• size: you provide during running
(dynamic)

• Release memory:
• free(ptr)

• Acquire memory:
• declare variables
• size: compiler calculates before

running (static)
• Release memory:
• do nothing

Stack Heap

The Heap
Stack vs Heap

• Acquire memory:
• ptr = malloc(n)

• size: you provide during running
(dynamic)

• Release memory:
• free(ptr)

• You can forget to release;
memory leak

• Acquire memory:
• declare variables
• size: compiler calculates before

running (static)
• Release memory:
• do nothing

Stack Heap

The Heap
Stack vs Heap

• Acquire memory:
• ptr = malloc(n)

• size: you provide during running
(dynamic)

• Release memory:
• free(ptr)

• You can forget to release;
memory leak

• Acquire memory:
• declare variables
• size: compiler calculates before

running (static)
• Release memory:
• do nothing
• You can't forget to release

Stack Heap

The Heap
Stack vs Heap

• Acquire memory:
• ptr = malloc(n)

• size: you provide during running
(dynamic)

• Release memory:
• free(ptr)

• You can forget to release;
memory leak

• Acquire memory:
• declare variables
• size: compiler calculates before

running (static)
• Release memory:
• do nothing
• You can't forget to release

Stack Heap

• Accessing released memory is bad;
memory error

Data Structures
Week 4 onwards

Data structure Data structure

Unboxed Boxed

Data
Data

Data Data

• Boxed: Nodes store pointers to client-managed data. (Polymorphic)

• Unboxed: Data would be stored directly in the nodes. (Faster access)

Data Structures

Indices Pointers

List Array List Linked List

Map Hash Table BST

• Establishing structures on the heap:

• Indices: contiguous

• random access

• difficult to reorder and reallocate

• Pointer: scattered

• sequential access

• easy to reorder and reallocate

O(1)

Array
Growing an array

Th
e

H
ea

p

int *

m
a
i
n

1 2 3 4

• Pointers serve as an indirection.

• We aren't changing the size of the array; we
are changing which array the pointers point
to.

• By changing the address of the pointer, it
seems to the user that we have changed the
size of the array.

• We create and delete memory however we
want thanks to the heap.

1 2 3 4

Array
Boxed Array

Th
e

H
ea

p

void **

m
a
i
n

Data

• • •

Data Data

Linked Lists

void *

ptr

void *

ptr

void *

ptr

void *

ptr

NULL

list
user's data user's data user's data user's data

Binary Search Tree

• A binary search tree is a binary tree where

• For a given node n with key k,

• All nodes with keys less than k are in n's left subtree.

• All nodes with keys greater than k are in n's right subtree.

17

12 57

40 841 ?

BST
Height

1

12

16

17

40

57

84

17

12 57

40 841 16

Balanced Unbalanced

BST
Remove

17

12 57

40 8410 14

1 11 13 15

Hash Table
Review

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

O(1)

Review

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

O(1)

• We have a way to turn anything into an integer -- hash function

Review

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

O(1)

• We have a way to turn anything into an integer -- hash function

• We have a way to force any integers into a reasonable range -- compression
(usually modulus)

Review

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

O(1)

• We have a way to turn anything into an integer -- hash function

• We have a way to force any integers into a reasonable range -- compression
(usually modulus)

• We need to handle collisions:

Review

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

O(1)

• We have a way to turn anything into an integer -- hash function

• We have a way to force any integers into a reasonable range -- compression
(usually modulus)

• We need to handle collisions:

• Collisions can be the result of the hash function

Review

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

O(1)

• We have a way to turn anything into an integer -- hash function

• We have a way to force any integers into a reasonable range -- compression
(usually modulus)

• We need to handle collisions:

• Collisions can be the result of the hash function

• ... of compression

Review

Hash Table

• Each slot is a list of key-value pairs, called a bucket

Chaining

0

1

2

3

4

5

6

7

8

9

41

35

7

18

• Collisions will be prepended into the list

45 15 65

Hash Table
Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

Hash Table
Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

Hash Table
Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

Hash Table
Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

Hash Table
Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

• Insert:

Hash Table
Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

• Insert:

• Move down until first empty bucket

Hash Table
Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

• Insert:

• Move down until first empty bucket

• If tombstone is encountered, we can reuse that bucket

Hash Table
Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

• Insert:

• Move down until first empty bucket

• If tombstone is encountered, we can reuse that bucket

• But to avoid inserting duplicate keys, we need to
continue searching until an unremoved bucket

Hash Table
Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

• Insert:

• Move down until first empty bucket

• If tombstone is encountered, we can reuse that bucket

• But to avoid inserting duplicate keys, we need to
continue searching until an unremoved bucket

Sorting

• : Selection, Insertion, Bubble

• : Tree, Merge, Quick

• without extra space (not even a stack): Heap sort

• Heap sort is "selection sort with the right data structure.

O(n2)

O(n log n)

O(n log n)

• The operating system creates an illusion that each process is running by itself
by:

• Context switching -- rapidly switching which process has control over the
CPU

• Virtual memory -- providing each process with its own address space

Machine
Your computer can do many things at the same time...

CPU Memory Unit

In
pu

t/O
ut

pu
t

Operating System (OS)

Virtual Memory

0 11 process 2

77 80

process 3

203 205

Physical memory

Virtual memory
17 19

Get address 18 OS

Page Table

Get address 204
CPU

• CPU can do this
translation very
efficiently

• The chunks of
memory used to be
called segments.

• segmentation fault!

• Each process has its own

• Virtual memory

• Registers

• Program counter

• ...

• OS keeps track of these data in its internal data structure.

Context Switching

Threads

Threads

• A thread is a unit of execution. Each thread has its own:

• Thread ID

• Stack

• Program counter (pc)

• Registers

• A process contains a number of threads. Threads within a process share:

• Code, data

• Threads are executed concurrently.

Threads

What next?

• Data structure, complexity, sorting:

• CMSC 27200. Theory of Algorithms

• File, permanent storage, bits:

• CMSC 23500. Introduction to Database Systems

• Memory, instructions, language:

• CMSC 14400 Systems Programming II

• CMSC 22200. Computer Architecture

• CMSC 22600. Compilers for Computer Languages

• Communication, bits, systems:

• CMSC 23300. Networks and Distributed Systems

• Concurrency, threads, scheduling:

• CMSC 23000. Operating Systems

• CMSC 23010. Parallel Computing

... and many more!

Study for Final

• Binary, hex, decimal conversion (both signed and unsigned)

• Your homework solutions

• Tagged union

• Write a tagged union called Car with variants SUV, Sedan, Truck

• Array List

• Malloc and realloc

• Linked List

• Write a traversal by hand

• BST

• What are the properties of a BST? Draw a binary tree that is not a BST.

• Write a "map_get" by hand

Study for Final

• Sorting

• Insertion, Selection, Bubble: In each iteration, where do we look? What is swapped?

• Merge sort: How to merge two sorted lists?

• Quick sort: Why partitioning sorts the list?

• Heap sort: Visually, how do insertion and removal look like?

• Hash table

• What is a good hash function? What is a problematic hash function?

• Chaining

• Probing -- why do we need tombstones?

Cont.

Course Evaluation

https://go-stage.blueja.io/NNGQqaei9UKjhM4zcOWDGg

