Machine Structure

Konstantinos Ameranis, July 30

A Von Neumann Machine

Input/Output

Memory Unit
CPU

A Von Neumann Machine

CPU

CPU

Review

Core
Decode and Prefetch

Arithmetic and Logical

Unit To RAM

o,
~=
-
)
1
2
~4
C
=

Registers

19]|]0J13u0n Alowd|N

CPU

Review

* Registers: named locations storing
64-bit values. These registers can
hold integers or addresses
(pointers).

Core
Decode and Prefetch

Arithmetic and Logical

Unit To RAM

Registers

o,
~=
-
)
1
2
~4
C
=

19]|]0J13u0n Alowd|N

CPU

Review

= * Registers: named locations storing
ore

64-bit values. These registers can
.

hold integers or addresses
Arithmetic and Logical (pointers)_

Unit To RAM

 Some registers keep track of
program states; others hold
temporary data, such as local
variables

Registers

o,
~=
-
)
1
2
~4
C
=

19]|]0J13u0n Alowd|N

CPU

Review

= * Registers: named locations storing
ore

64-bit values. These registers can
.

hold integers or addresses
Arithmetic and Logical (pointers)_

Unit To RAM

 Some registers keep track of
program states; others hold
temporary data, such as local
variables

Registers

o,
~=
-
)
1
2
~4
C
=

19]|]0J13u0n Alowd|N

 ALU: reads from registers and
perform calculations.

CPU

Review

Core
Decode and Prefetch

Arithmetic and Logical

Unit To RAM

o,
~=
-
)
1
2
~4
C
=

Registers

19]|]0J13u0n Alowd|N

CPU

Review

o Cache: stores recently read

Core :
memory to improve performance.

Decode and Prefetch

Arithmetic and Logical

Unit To RAM

Registers

o,
~=
-
)
1
2
~4
C
=

19]|]0J13u0n Alowd|N

CPU

Review

o Cache: stores recently read

Core :
memory to improve performance.

Decode and Prefetch

. 144

Arithmetic and Logical

Unit To RAM

Registers

o,
~=
-
)
1
2
~4
C
=

19]|]0J13u0n Alowd|N

CPU

Review

o Cache: stores recently read

Core :
memory to improve performance.

Decode and Prefetch

. 144

Arithmetic and Logical
Unit To RAM

* Program counter (pc), or
instruction pointer (ip), points at

some Iinstruction in memory.

Registers

o,
~=
-
)
1
2
~4
C
=

19]|]0J13u0n Alowd|N

CPU

Review

Core
Decode and Prefetch

Arithmetic and Logical

Unit To RAM

o,
~=
-
)
1
2
~4
C
=

Registers

19]|]0J13u0n Alowd|N

CPU

Review

 From the time power is applied to the
Core system, until the power is shut off, CPU

Decode and Prefetch performs the same basic tasks
repeatedly:

Arithmetic and Logical

Unit To RAM

o,
~=
-
)
1
2
~4
C
=

Registers

19]|]0J13u0n Alowd|N

CPU

Review

 From the time power is applied to the
Core system, until the power is shut off, CPU

Decode and Prefetch performs the same basic tasks
repeatedly:

Arithmetic and Logical

Unit To RAM

 Reads the instruction pointed by pc

o,
~=
-
)
1
2
~4
C
=

Registers

19]|]0J13u0n Alowd|N

CPU

Review

 From the time power is applied to the
Core system, until the power is shut off, CPU

Decode and Prefetch performs the same basic tasks
repeatedly:

Arithmetic and Logical

Unit To RAM

 Reads the instruction pointed by pc

o,
~=
-
)
1
2
~4
C
=

Registers * |nterprets the bits in the instruction

19]|]0J13u0n Alowd|N

CPU

Review

o,
~=
-
)
1
2
~4
C
=

Core
Decode and Prefetch

Arithmetic and Logical
Unit

Registers

19]|]0J13u0n Alowd|N

To RAM

From the time power is applied to the
system, until the power is shut off, CPU
performs the same basic tasks
repeatedly:

Reads the instruction pointed by pc
Interprets the bits in the instruction

Performs some operations as instructed

CPU

Review

o,
~=
-
)
1
2
~4
C
=

Core
Decode and Prefetch

Arithmetic and Logical
Unit

Registers

19]|]0J13u0n Alowd|N

To RAM

From the time power is applied to the
system, until the power is shut off, CPU
performs the same basic tasks
repeatedly:

Reads the instruction pointed by pc
Interprets the bits in the instruction
Performs some operations as instructed

Updates the pc to point to the next
iInstruction

Instructions

Review

Instructions

Review

int accum = 0;

int sum(int x, 1int V)
{
int t = x + vy;
accum += t;
return t;

code.c

Instructions

Review

int accum = 0;

int sum(int x, 1int vy)
{
int t = x + vy;
accum += t;
return t;

code.cC

clang -02 -c code.c

Instructions

Review

int accum = 0;

int sum(int x, 1int vy)
{
int t = x + vy;
accum += t;
return t;

code.cC

clang -02 -c code.c

89 £3 01 £0 01 05 00 00 00 00 c3

Instructions

Review
int accum = 0; clang -02 -c code.c
int sum(int x, 1nt V) 89 £3 01 £0 01 05 00 00 OO0 00 c3

{
int t = x + y;
accum += t;

return t; * This function is compiled to 11 bytes of
Instructions

code.cC

Instructions

Review

Objdump displays info about object files. -d
int accum = 0 $ objdump -d code.o disassembles” machine code.
int sum(int x, int v) code.o: file format elf64-x86-64

{
int t = x + vy;

accum += t; Disassembly of section .text:
return t;
} 0000000000000000 <sum>:
O: 89 f£8 mov zedi, seax
code.c 2: 01 £0 add %esi,%eax
4. 01 05 00 00 00 OO0 add %eax,0x0 (3rip)
a: c3 retq

Instructions

Review
int accum = 0; S objdump -d code.o
int sum(int x, int v) code.o: file format elf64-x86-64

{
int t = x + vy;

accum += t; Disassembly of section .text:
return t; %xx§ are
} 0000000000000000 <sum>: register names
O: 89 f£8 mov zedi, seax
code.c 2. 01 £0 add %esi,%eax
4: 01 05 00 00 00 00 add %eax, 0x0 ($rip)
a: c3 retq

Instructions

Review
int accum = 0; S objdump -d code.o
int sum(int x, int v) code.o: file format elf64-x86-64

{

int t = x + y;

accum += t; Disassembly of section .text.: By convention, %edi
return t; stores the first argqg,
0000000000000000 <sum>: tesi stores the second.
O: 89 f£8 mov zedi, seax
code.c 2: 01 £0 add %esi,%eax
4: 01 05 00 00 00 00 add %eax,0x0 ($rip)
a: c3 retq

Instructions

Review
int accum = 0; S objdump -d code.o
int sum(int x, int v) code.o: file format elf64-x86-64

{
int t = x + vy;

accum += t; Disassembly of section .text: o
seax stores the return
return t; value .
} 0000000000000000 <sum>:
O: 89 f£8 mov zedi, seax
code.c 2. 01 £0 add %esi,%eax
4: 01 05 00 00 00 OO add eax,0x0 (3rip)
a: c3 retq

Instructions

Review
int accum = 0; S objdump -d code.o
int sum(int x, int v) code.o: file format elf64-x86-64

{
int t = x + vy;

accum += t; Disassembly of section .text:
return t;
} 0000000000000000 <sum>:
code . @ 0: move the first argument mov %edii- , seax
2: (edi) to the return add %esi, $eax
4 value (eax) add eax,0x0 (3rip)
a: retq

Instructions

Review
int accum = 0; S objdump -d code.o
int sum(int x, int v) code.o: file format elf64-x86-64

{
int t = x + vy;

accum += t; Disassembly of section .text:
return t;
} 0000000000000000 <sum>:
code . & 0: add the second argument mov %ed:i. , seax
2: (esi) to the return add %esi, $eax
4 value (eax) add eax,0x0 (3rip)
a: retq

Instructions

Review
int accum = 0; S objdump -d code.o
int sum(int x, int v) code.o: file format elf64-x86-64

{
int t = x + vy;

accum += t; Disassembly of section .text:
return t;
} 0000000000000000 <sum>:
0: mov sedi, Seax
code.c 2: add eax to a location. add %Zesli, Seax
4: add eax,0x0 (3rip)
a: retq

Instructions

Review
int accum = 0; S objdump -d code.o
int sum(int x, int v) code.o: file format elf64-x86-64

{

int t = x + vy;
accum += t; Disassembly of section .text:
return t;

0000000000000000 <sum>:

O: mov
code.c 2. add

4 - add

3 - retq

sedi, Seax
Tesli, $eax
eax,0x0 (3rip)

Instructions

Review

int accum = 0;

int sum(int x, 1int V)
{
int t = x + vy;
accum += t;
return t;

code.c

Instructions

Review

int accum = 0U; * |Load: copy some bytes from memory to a register

int sum(int x, 1int V)
{
int t = x + vy;
accum += t;
return t;

code.cC

Instructions

Review

int accum = 0U; * |Load: copy some bytes from memory to a register

int sum(int x, 1int vy)

{ o Store: copy some bytes from a register to memory
int t = x + vy;
accum += t;
return t;

code.cC

Instructions

Review

int accum =

int sum(int x, 1int vy)
{
int t = x + vy;
accum += t;
return t;

code.cC

* |Load: copy some bytes from memory to a register
o Store: copy some bytes from a register to memory

 Update: copy the contents of two registers to the
ALU, which does some calculation and stores the
result in a register

Instructions

Review

int accum =

int sum(int x, 1int vy)
{
int t = x + vy;
accum += t;
return t;

code.cC

Load: copy some bytes from memory to a register
Store: copy some bytes from a register to memory

Update: copy the contents of two registers to the
ALU, which does some calculation and stores the
result in a register

/O operations: read/write from an |/O device into a
register

Instructions

Review

int accum =

int sum(int x, 1int vy)

{
int t = x + vy;
accum += t;
return t;

code.cC

Load: copy some bytes from memory to a register
Store: copy some bytes from a register to memory

Update: copy the contents of two registers to the
ALU, which does some calculation and stores the
result in a register

/O operations: read/write from an |/O device into a
register

Jump: Set the pc to be some arbitrary value

Instructions

Review
int accum = 0; int sum(int x, int vy);
int sum(int x, 1int vy) int main(void)
{ {
int t = x + vy; return sum(l, 3);
accum += t; }

return t;

code.cC main.c

Instructions

Review
int accum = 0; int sum(int x, int vy);
int sum(int x, 1int vy) int main(void)
{ {
int t = x + vy; return sum(l, 3);
accum += t; }

return t;

code.cC main.c

clang -02 -o prog code.o main.c

Instructions

Review

0000000000401110 <sum>:
401110:89 £8
401112:01 £O
401114:01 05 12 2f 00 0O
4011l1a:c3
40111b:0f 1£f 44 00 0O0

0000000000401120 <main>:
401120:bf 01 00 00 OO
401125:be 03 00 00 OO
40112a:e9 el ff ff ff
40112f: 90

mov
add
add
retq
nopl

mov
mov
Jmpq
nop

sedl, Seax
sesi, $eax

%eax,0x2£f12 (%rip) # 40402c <accum>

0x0 (%rax, $rax,1l)

S0x1, $edi
S0x3, $esi
401110 <sum>

mov 1 to edi

Instructions

Review

0000000000401110 <sum>:
401110:89 £8
401112:01 £O
401114:01 05 12 2f 00 0O
4011l1a:c3
40111b:0f 1£f 44 00 0O0

0000000000401120 <main>:
401120:bf 01 00 00 OO
401125:be 03 00 00 OO
40112a:e9 el ff ff ff
40112f: 90

mov
add
add
retq
nopl

mov
mov
Jmpq
nop

sedl, Seax
sesi, $eax

%eax,0x2£f12 (%rip) # 40402c <accum>

0x0 (%rax, $rax,1l)

S0x1, $edi
S0x3, $esi
401110 <sum>

mov 3 to esi

Instructions

Review

0000000000401110 <sum>:
401110:89 £8
401112:01 £O
401114:01 05 12 2f 00 0O
4011l1a:c3
40111b:0f 1£f 44 00 0O0

0000000000401120 <main>:
401120:bf 01 00 00 OO
401125:be 03 00 00 OO
40112a:e9 el ff ff ff
40112f: 90

mov
add
add
retq
nopl

mov
mov
Jmpq
nop

sedl, Seax
sesi, $eax

%eax,0x2£f12 (%rip) # 40402c <accum>

0x0 (%rax, $rax,1l)

S0x1, $edi
S0x3, $esi
401110 <sum>

jump to location 401110

Instructions

Review

0000000000401110 <sum>:
401110:89 £8
401112:01 £O
401114:01 05 12 2f 00 0O
4011l1a:c3
40111b:0f 1£f 44 00 0O0

0000000000401120 <main>:
401120:bf 01 00 00 OO
401125:be 03 00 00 OO
40112a:e9 el ff ff ff
40112f: 90

mov
add
add
retq
nopl

mov
mov
Jmpq
nop

sedl, Seax
sesi, $eax
Yeax,0x2fl12 (Srip)

0x0 (%rax, %rax,1l)
S0x1, $edi

S0x3, $esi
401110 <sum>

40402¢c <accum>

The global wvariable has

been assigned a location
40402c

linker

* every .o file provides
some functions

* linker links all the
functions together

* finds main

Instructions

Review

Instructions

Review

 Cis compiled to a low-level language called assembly language.

Instructions

Review

 Cis compiled to a low-level language called assembly language.

 Assembly language expresses a sequence of CPU instructions.

Instructions

Review

 Cis compiled to a low-level language called assembly language.
 Assembly language expresses a sequence of CPU instructions.

 The assembly language is assembled by an assembler to machine code (byte
sequences).

Instructions

Review

 Cis compiled to a low-level language called assembly language.
 Assembly language expresses a sequence of CPU instructions.

 The assembly language is assembled by an assembler to machine code (byte
sequences).

 Disassembler does the opposite.

Instructions

Review

 Cis compiled to a low-level language called assembly language.
 Assembly language expresses a sequence of CPU instructions.

 The assembly language is assembled by an assembler to machine code (byte
sequences).

 Disassembler does the opposite.

 CPU executes instructions in a loop from power-on to power-off

Instructions

Review

 Cis compiled to a low-level language called assembly language.
 Assembly language expresses a sequence of CPU instructions.

 The assembly language is assembled by an assembler to machine code (byte
sequences).

 Disassembler does the opposite.
 CPU executes instructions in a loop from power-on to power-off

A CPU core contains an ALU and a number of registers (and other stuff).

TFFFFFFFFFFFFFEF arqv, environments

Stack

Process Memory

Global (static) variables

Text (code)

0000000000000000

Instructions

Instructions

« Whenyourun ./prog argl arg2 arg3, al/oader puts the content of prog
INnto memory, and:

Instructions

« Whenyourun ./prog argl arg2 arg3, al/oader puts the content of prog
INnto memory, and:

 Moves the pc to the first instruction in prog

Instructions

« Whenyourun ./prog argl arg2 arg3, al/oader puts the content of prog
INnto memory, and:

 Moves the pc to the first instruction in prog

e |nitializes the stack

Instructions

« Whenyourun ./prog argl arg2 arg3, al/oader puts the content of prog
INnto memory, and:

 Moves the pc to the first instruction in prog
* |nitializes the stack

 Copies the command-line arguments into memory

Instructions

« Whenyourun ./prog argl arg2 arg3, al/oader puts the content of prog
INnto memory, and:

 Moves the pc to the first instruction in prog
* |nitializes the stack

 Copies the command-line arguments into memory

Machine

Your computer can do many things at the same time...

e >
- @

Machine

Your computer can do many things at the same time...

e >
- @

Machine

Your computer can do many things at the same time...

O O Q?thir\éit(!ssh/elgnitor @ v CPU Memory Energy Disk Network Q
Process Name Memory Threads Ports PID User
https://www.gradescope.com 1.80 GB 4 93 17547 byron
WindowServer 1.54 GB 24 3,883 150 _windowserver
ﬂ Keynote 971.9 MB 7 813 17566 byron
Music 871.5 MB 26 1,940 13588 byron
https://canvas.uchicago.edu 799.5 MB 5 140 17545 byron
—= Preview 535.1 MB 4 447 16935 byron
& Finder 518.1 MB 7 957 478 byron
@ Safari 419.9 MB 9 3,624 439 byron
8 Terminal 397.2 MB 6 327 442 byron
QuickLookUlIService (Messages) 305.9 MB 7 348 17251 byron
Slack Helper (Renderer) 289.7 MB 21 246 893 byron
https://www.google.com 271.2 MB 3 93 18017 byron
wd Messages 218.3 MB 4 740 13651 byron
1Pacewnrd Qafari Weh Fytancinn 215 2 MR A]R8 Q17 hvran

MEMORY PRESSURE Physical Memory: 32.00 GB

App M : 16.07 GB

Memory Used: 22.76 GB < PP MEMory
Cached Fil 0.54 GB Wired Memory: 2.20 GB
ached riies: : Compressed: 1.98 GB

Swap Used: 0 bytes

Machine

Your computer can do many things at the same time...

e
-
O
e
-
O
=
-
Q
=

Machine

Your computer can do many things at the same time...

Machine

Your computer can do many things at the same time...

e
-
O
e
-
<
e
-
Q
=

Memory Unit

Machine

Your computer can do many things at the same time...

Operating System (OS)
] e R

Input/Outg

Machine

Your computer can do many things at the same time...

* The operating system creates an illusion that each process is running by itself
by:

Operating System (OS)
] e R

@
e
-
O
=
-
Q
L=

Machine

Your computer can do many things at the same time...

* The operating system creates an illusion that each process is running by itself
by:

* Context switching -- rapidly switching which process has control over the
CPU

Operating System (OS)
] e R

@
e
-
O
=
-
Q
L=

Machine

Your computer can do many things at the same time...

* The operating system creates an illusion that each process is running by itself
by:

* Context switching -- rapidly switching which process has control over the
CPU

* Virtual memory -- providing each process with its own address space

Operating System (OS)
] e R

@
e
-
O
=
-
Q
L=

Virtual Memory

Physical memory

Virtual Memory

What if process 1 needs more memory?

Physical memory

process 1 . process 2

process 3

Virtual Memory

What if process 1 needs more memory?

Physical memory

process 1 | process 2

process 3

Virtual Memory

What if process 1 needs more memory?

Physical memory

process 1 process 2

process 3

Virtual Memory

What if process 1 needs more memory?

Physical memory

process 1

process 3

No more room here :(

process 2

Virtual Memory

What if process 1 is buggy or malicious?

Physical memory

process 1 process 2

process 3

Virtual Memory

What if process 1 is buggy or malicious?

process 1 tries to
Physical memory write here

process 1 process 2

process 3

Virtual Memory

Virtual memory

0 11

IPhysical memory I

Virtual Memory

Virtual memory

12 16

Physical memory

0

11 process 2

77 80

process 3

Virtual Memory

Virtual memory

Physical memory

0

11

process 3

17 19

process 2

80‘

Virtual Memory

_ Get address 18
Virtual memory

Physical memory

11

process 3

77

17

80

19

process 2

Virtual Memory

Page Table

Get address 18 e d O

Virtual memory

17 19

Physical memory
11 process 2

80

process 3

Virtual Memory

Page Table

Get address 18 pummmdOS) Get address 204

19

Virtual memory

Physical memory
11 process 2

80

process 3

Virtual Memory

Page Table

CPU
Get address 18 pummmdOS) Get address 204

Virtual memory

19

Physical memory

0

11 process 2

80

process 3

Virtual Memory

nage Taple e CPU can do this

CPU i
Get address 18 guuuudON! Get address 204 t"a_”§|at'0” very
efficiently

Virtual memory

19

Physical memory

0

11 process 2

77 80

process 3

Virtual Memory

Virtual memory

Get address 18 mmmmm 0N

Physical memory

0

11

process 3

Page Table

Get address 204

77

19

process 2

CPU

80

 CPU can do this
translation very
efficiently

* The chunks of
memory used to be
called segments.

Virtual Memory

Virtual memory

Get address 18 mmmmm 0N

Physical memory

0

11

process 3

Page Table

Get address 204

77

19

process 2

80

CPU

 CPU can do this
translation very
efficiently

* The chunks of
memory used to be
called segments.

* segmentation fault!

Context Switching

Context Switching

 Each process has its own

Context Switching

 Each process has its own

* Virtual memory

Context Switching

 Each process has its own
* Virtual memory

* Registers

Context Switching

 Each process has its own
* Virtual memory
* Registers

 Program counter

Context Switching

 Each process has its own
* Virtual memory
* Registers

 Program counter

Context Switching

 Each process has its own
* Virtual memory
* Registers
 Program counter

 OS keeps track of these data in its internal data structure.

Threads

e

B o & 3§

@® Activity Monitor

All Processes
Process Name

https://www.gradescope.com
WindowServer

Keynote

Music
https://canvas.uchicago.edu
Preview

Finder

Safari

Terminal
QuickLookUlIService (Messages)
Slack Helper (Renderer)
https://www.google.com

Messages

1Paccwnrd Safari Weah Fytaencinn

@ v

Memory

MEMORY PRESSURE

1.80 GB

1.54 GB
971.9 MB
871.5 MB
799.5 MB
535.1 MB
518.1 MB
419.9 MB
397.2 MB
305.9 MB
289.7 MB
271.2 MB
218.3 MB

218 2 MR

Threads

2

2

2

Physical Memory:

Memory Used:
Cached Files:
Swap Used:

Ports

4 93
4 3,883
7 813
6 1,940
5 140
4 447
7 957
9 3,624
6 327
7 348
1 246
3 93
4 740
a 28
32.00 GB
22.76 GB

9.54 GB

0 bytes

CPU Memory Energy Disk Network

PID

17547
150
17566
13588
17545
16935
478
439
442
17251
893
18017
13651

Q17

App Memory:

User

byron

_windowserver

byron
byron
byron
byron
byron
byron
byron
byron
byron
byron
byron

hvran

Wired Memory:

Compressed:

16.07 GB
2.20 GB
1.98 GB

Threads

® © zf:i;itixgnimr 0 @O @v CPU Memory Energy Disk Network Q Search
Process Name Memory v Ports PID User
\/ https://www.gradescope.com 1.80 GB 93 17547 byron
WindowServer 1.54 GB 3,883 150 _windowserver
Keynote 971.9 MB 813 17566 byron
Music 871.5 MB 1,940 13588 byron
\/ https://canvas.uchicago.edu 799.5 MB 140 17545 byron
-= Preview 535.1 MB 447 16935 byron
& Finder 518.1 MB 957 478 byron
@ Ssafari 419.9 MB 3,624 439 byron
Terminal 397.2 MB 327 442 byron
O QuickLookUlIService (Messages) 305.9 MB 348 17251 byron
Slack Helper (Renderer) 289.7 MB 246 893 byron
O https://www.google.com 271.2 MB 93 18017 byron
Q Messages 218.3 MB 740 13651 byron
__|_1Pacewnrd Safari Weh Fytancinn 215 2 MR]8K 017 huron
MEMORY PRESSURE Physical Memory: 32.00 GB

Memory Used: 22.76 GB A;.>p Memory: 16.07.GB

Cached Files: o5ace | rodMemory: 22068

Compressed: 1.98 GB

s Swap Used: 0 bytes

Threads

Threads

e A thread is a unit of execution. Each thread has its own:

Threads

e A thread is a unit of execution. Each thread has its own:
e Thread ID

Threads

e A thread is a unit of execution. Each thread has its own:
e Thread ID

e Stack

Threads

e A thread is a unit of execution. Each thread has its own:
e Thread ID

e Stack

 Program counter (pc)

Threads

e A thread is a unit of execution. Each thread has its own:
e Thread ID

e Stack
 Program counter (pc)

* Registers

Threads

* A thread is a unit of execution. Each thread has its own:
 Thread ID
o Stack
 Program counter (pc)
* Registers

* A process contains a number of threads. Threads within a process share:

Threads

* A thread is a unit of execution. Each thread has its own:
 Thread ID
o Stack
 Program counter (pc)
* Registers
* A process contains a number of threads. Threads within a process share:
 Code, data

Threads

* A thread is a unit of execution. Each thread has its own:
 Thread ID
o Stack
 Program counter (pc)
* Registers
* A process contains a number of threads. Threads within a process share:
 Code, data

* [hreads are executed concurrently.

Threads

Thread 1 Thread 2
(main thread) | (peer thread)

} Thread context switch
Time

} Thread context switch

} Thread context switch

Threads

* |In C, threads are managed by a library called pthread

Threads

Creation

#include <pthread.h>
#include <stdio.h>

vold *thread(void *data);

int main ()

{
pthread t tid;

pthread create(&tid, NULL, thread, "hello, world!");
pthread join(tid, NULL);

return 0O;

J

vold *thread(void *data)

{

char *str = data;
printf ("%s\n", str);

return NULL;

Threads

Creation

#include <pthread.h>
#include <stdio.h>

vold *thread(void *data);
int main ()

{
pthread t tid;

launches a new thread

pthread create(&tid, NULL, thread, "hello, world!");
pthread join(tid, NULL) ;

return ;

J

vold *thread(void *data)

{

char *str = data;
printf ("%$s\n", str);

return NULL;

Threads

Creation

#include <pthread.h>
#include <stdio.h>

vold *thread (void *data) ;
int main ()
{

pthread t tid;

pthread create(&tid, NULL, thread, "hello, world!"); waits for the thread to
pthread join(tid, NULL) ; terminate

return ;

J

vold *thread(void *data)

{

char *str = data;
printf ("%$s\n", str);

return NULL;

Threads

Creation

#include <pthread.h>
#include <stdio.h>

vold *thread (void *data) ;
int main ()
{

pthread t tid;

pthread create(&tid, NULL, thread, "hello, world!");
pthread join(tid, NULL);

return ;

J

function to run

vold *thread(void *data)

{

char *str = data;
printf ("%s\n", str);

return NULL;

Threads

Creation

1nt

pthread create(pthread t *thread, const pthread attr t *attr,
volid * (*start routine) (void *),
vold *arqg);

Threads

Creation

pthread create
creates a new thread

and immediately starts
int running the thread.

pthread create(pthread t *thread, const pthread attr t *attr,
volid * (*start routine) (void *),
vold *arqg);

Threads

Creation
Once created, each
thread is assighed a
| thread ID by the OS.
int

pthread create(pthread t *thread, const pthread attr t *attr,
volid * (*start routine) (void *),
vold *arqg);

Threads

Creation
Thread attribute.
Almost always just
NULL

int

pthread create(pthread t *thread, const pthread attr t *attr,
volid * (*start routine) (void *),
vold *arqg);

Threads

Creation

1nt

pthread create (pthread t *thread, const pthread attr t *attr,
volid * (*start routine) (void *),
vold *arqg); The function to run in

the thread. Arg: void *,
Return: void *

Threads

Creation

1nt

pthread create(pthread t *thread, const pthread attr t *attr,
volid * (*start routine) (void *),
vold *arqg);

The argument to the

function. Similar to the
data pointer in * walk

Threads

Creation

int
pthread join(pthread t thread, void **value ptr);

e Demo

Moral: slowprimes.c

* C is so much better than Python at number crunching

e |f a problem can be broken down into disjoint subproblems, parallelism
shortens the running time by a lot

main thread

................ peer peer peer peer

pthread create() -'~'-'.'.:;;;:: -thrgad-3-1f:thread.2.] | thread 1 | | thread O

x 4| Tt /—nd
i

.................
i "y
LE}

pthread join() func(3) func(2) func(1) func(0)
x 4 I
y

u

"""""""""""

T

L
.
«*

o .
- -

‘‘‘‘‘‘‘‘‘‘‘

‘‘‘‘‘‘‘‘‘‘‘‘

‘‘‘‘‘‘‘

return (from join()) |4~

total

Moral: primes.c

* The best kind of performance improvement is algorithmic improvement -- the
one that improves the asymptotic running time.

e Thread creation has its own cost. This cost needs to be factored in when one
decides whether to use concurrency.

 Multithreading loses some benefit when the problem cannot be cleanly sliced
iInto subproblems

 Multithreading code is usually a lot more complicated than single-threaded
code.

Moral: badent.c

 Concurrency bug can happen when threads share resources.
 Threads do not have its own virtual memory space like processes do
» Memory access Is not atomic -- x += 1 Is three separate steps
 Read x to a register (load)
* |ncrement the register (update)
* Write the register to memory (store)

« Memory updates need to be synchronized

Moral: goodcnt.c

« Synchronization can be done via semaphores (e.g. locks)
* pthread mutex lock waits the value to be positive
* pthread mutex unlock increments the value

* Synchronized code is not parallel :(

Moral: bomb.c

* Asynchronous I/O

e Semaphores can be used to indicate the readiness of a value

When should | use threads?

e Spot parallelizable code

 Code that doesn't depend on other's result

* E.g. loop where each iteration Is independent
 Beware of concurrency bugs

 Read-write conflict

* Write-write conflict

e Semaphore

Thread (cont.)

badcnt.c

/* shared variable */
unsigned 1nt cnt = 0; vold *count (void *arqg)
void *count (void *); {
(void) arg;
int main (void)
{ for (unsigned int 1 = 0; 1 < N; 1++) {
pthread t tidl, tidZ; cnt++;

pthread create(&tidl, NULL, count, NULL);
pthread create(&tid2, NULL, count, NULL); return NULL;

pthread join(tidl, NULL);
pthread join(tidZ2, NULL);

if (cnt == N * 2) {
printf ("OK cnt=%u\n", cnt);
} else
printf ("BOOM cnt=%u\n", cnt);

return 0;

vold *count (void *arqg)

cnt {
0 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit

Core
Arithmetic and

Logical Unit

Registers

vold *count (void *arqg)

cnt {
0 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit
O

Core

Arithmetic and

Logical Unit

Registers

vold *count (void *arqg)

cnt {
0 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit
1

Core

Arithmetic and

Logical Unit

Registers

vold *count (void *arqg)

cnt {
1 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit
1

Core

Arithmetic and

Logical Unit

Registers

vold *count (void *arqg)

cnt {
1 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit
1

Core

Arithmetic and

Logical Unit

Registers 1

vold *count (void *arqg)

cnt {
1 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit
1

Core

Arithmetic and

Logical Unit

Registers 2

vold *count (void *arqg)

cnt {
2 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit
1

Core

Arithmetic and

Logical Unit

Registers 2

Thread (cont.)

badcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and

Logical Unit

Registers

cnt

10

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1
cnt++;

J

return NULL;

;1 < N3

i++)

Thread (cont.)

badcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and

Logical Unit

Registers

cnt

10

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1
cnt++;

J

return NULL;

;1 < N3

i++)

Thread (cont.)

badcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and

Logical Unit

Registers

cnt

10

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1
cnt++;

J

return NULL;

;1 < N3

i++)

Thread (cont.)

badcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and

Logical Unit

Registers

cnt

11

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1
cnt++;

J

return NULL;

;1 < N3

i++)

vold *count (void *arqg)

{

Thread (cont.) = o

(unsigned 1nt 1 = 0;

cnt

pthread mutex lock(&sem);
goodcnt.c i

pthread mutex unlock(&sem) ;

}

Arithmetic and | return NULL;
Logical Unit

Arithmetic and
Logical Unit

Thread (cont.)

goodcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and
Logical Unit

cnt

11

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1 = 0; 1 < N; 1++)
pthread mutex lock(&sem);
cnt++;

pthread mutex unlock(&sem) ;

}

return NULL;
}

« pthread mutex lock "locks" cnt, if it
IS already locked, pthread mutex lock
will walit

Thread (cont.)

goodcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and
Logical Unit

cnt

11

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1 = 0; 1 < N; 1++)
pthread mutex lock(&sem);
cnt++;

pthread mutex unlock(&sem) ;

}

return NULL;
}

pthread mutex lock "locks" cnt, If it
IS already locked, pthread mutex lock
will walit

pthread mutex unlock "unlocks" cnt

Thread (cont.)

goodcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and
Logical Unit

cnt

11

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1 = 0; 1 < N; 1++)
pthread mutex lock(&sem);
cnt++;

pthread mutex unlock(&sem) ;

}

return NULL;
}

pthread mutex lock "locks" cnt, If it
IS already locked, pthread mutex lock
will walit

pthread mutex unlock "unlocks" cnt

Each loop now becomes

Thread (cont.)

goodcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and
Logical Unit

cnt

11

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1 = 0; 1 < N; 1++)
pthread mutex lock(&sem);
cnt++;

pthread mutex unlock(&sem) ;

}

return NULL;
}

pthread mutex lock "locks" cnt, If it
IS already locked, pthread mutex lock
will walit

pthread mutex unlock "unlocks" cnt

Each loop now becomes
* J|ock

Thread (cont.)

goodcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and
Logical Unit

cnt

11

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1 = 0; 1 < N; 1++)
pthread mutex lock(&sem);
cnt++;

pthread mutex unlock(&sem) ;

}

return NULL;
}

pthread mutex lock "locks" cnt, If it
IS already locked, pthread mutex lock
will walit

pthread mutex unlock "unlocks" cnt

Each loop now becomes
* J|ock
* read cnt

Thread (cont.)

goodcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and
Logical Unit

cnt

11

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1 = 0; 1 < N; 1++)
pthread mutex lock(&sem);
cnt++;

pthread mutex unlock(&sem) ;

}

return NULL;
}

pthread mutex lock "locks" cnt, If it
IS already locked, pthread mutex lock
will walit

pthread mutex unlock "unlocks" cnt

Each loop now becomes

e Jock
e read cnt
°* Incr

Thread (cont.)

goodcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and
Logical Unit

cnt

11

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1 = 0; 1 < N; 1++)
pthread mutex lock(&sem);
cnt++;

pthread mutex unlock(&sem) ;

}

return NULL;
}

pthread mutex lock "locks" cnt, If it
IS already locked, pthread mutex lock
will walit

pthread mutex unlock "unlocks" cnt

Each loop now becomes

e Jock
e read cnt
°* Incr

e write to cnt

Thread (cont.)

goodcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and
Logical Unit

cnt

11

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1 = 0; 1 < N; 1++)
pthread mutex lock(&sem);
cnt++;

pthread mutex unlock(&sem) ;

}

return NULL;
}

pthread mutex lock "locks" cnt, If it
IS already locked, pthread mutex lock
will walit

pthread mutex unlock "unlocks" cnt

Each loop now becomes
 Jock

 read cnt

* Incr

 write to cnt
 unlock

Thread (cont.)

goodcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and
Logical Unit

cnt

11

vold *count (void *arqg)

{

J

(void) arg;

for (unsigned int 1 = 0; 1 < N; 1++)
pthread mutex lock(&sem);
cnt++;

pthread mutex unlock(&sem) ;

}

return NULL;

pthread mutex lock "locks" cnt, If it
IS already locked, pthread mutex lock
will walit

pthread mutex unlock "unlocks" cnt

Each loop now becomes

lock

read cnt
INCr

write to cnt
unlock

No other thread will touch the number
between reading and writing

