Machine Structure

CS143: lecture 17

A Von Neumann Machine

A Von Neumann Machine

Review

 Registers: named locations storing 64-bit values. These registers can hold integers or addresses (pointers).

- Registers: named locations storing 64-bit values. These registers can hold integers or addresses (pointers).
 - Some registers keep track of program states; others hold temporary data, such as local variables

- Registers: named locations storing 64-bit values. These registers can hold integers or addresses (pointers).
 - Some registers keep track of program states; others hold temporary data, such as local variables
- *ALU*: reads from registers and perform calculations.

Review

• Cache: stores recently read memory to improve performance.

Review

 From the time power is applied to the system, until the power is shut off, CPU performs the same basic tasks repeatedly:


```
int accum = 0;
int sum(int x, int y)
{
    int t = x + y;
    accum += t;
    return t;
}
```

```
int accum = 0;
int sum(int x, int y)
{
    int t = x + y;
    accum += t;
    return t;
}
```

```
clang -02 -c code.c
```

```
int accum = 0;
int sum(int x, int y)
{
    int t = x + y;
    accum += t;
    return t;
}
```

```
clang -02 -c code.c
89 f3 01 f0 01 05 00 00 00 00 c3
```

Review

```
int accum = 0;
int sum(int x, int y)
{
    int t = x + y;
    accum += t;
    return t;
}
```

```
clang -02 -c code.c
89 f3 01 f0 01 05 00 00 00 00 c3
```

This function is compiled to 11 bytes of instructions

Review

```
"disassembles" machine code.
                        $ objdump -d code.o
int accum = 0;
                               file format elf64-x86-64
int sum(int x, int y)
                     code.o:
       int t = x + y;
                       Disassembly of section .text:
       accum += t;
       return t;
                        000000000000000 <sum>:
                                 89 f8
                                                                   %edi,%eax
                           0:
                                                            mov
            code.c
                          2:
                                 01 f0
                                                                   %esi,%eax
                                                            add
                           4: 01 05 00 00 00 00
                                                                   %eax, 0x0 (%rip)
                                                            add
                                 c3
                           a:
                                                            retq
```

Objdump displays info about object files. -d

```
int accum = 0;
                        $ objdump -d code.o
                               file format elf64-x86-64
int sum(int x, int y)
                     code.o:
       int t = x + y;
                        Disassembly of section .text:
       accum += t;
                                                                    %xxx are
       return t;
                                                                    register names
                        000000000000000 <sum>:
                                 89 f8
                           0:
                                                                   %edi,%eax
                                                            mov
            code.c
                           2:
                                 01 f0
                                                                   %esi,%eax
                                                            add
                           4: 01 05 00 00 00 00
                                                                   %eax, 0x0 (%rip)
                                                            add
                                 c3
                                                            retq
```

```
$ objdump -d code.o
int accum = 0;
                               file format elf64-x86-64
int sum(int x, int y)
                     code.o:
       int t = x + y;
                                                            By convention, %edi
                       Disassembly of section .text:
       accum += t;
                                                             stores the first arg,
       return t;
                                                             %esi stores the second.
                        000000000000000 <sum>:
                                 89 f8
                                                                   %edi,%eax
                           0:
                                                            mov
            code.c
                           2:
                                01 f0
                                                                   %esi,%eax
                                                            add
                           4: 01 05 00 00 00 00
                                                                   %eax, 0x0 (%rip)
                                                            add
                                 c3
                                                            retq
```

```
int accum = 0;
                        $ objdump -d code.o
                               file format elf64-x86-64
int sum(int x, int y)
                     code.o:
       int t = x + y;
                       Disassembly of section .text:
       accum += t;
                                                            %eax stores the return
       return t;
                                                            value.
                        000000000000000 <sum>:
                                                                   %edi,%eax
                                89 f8
                          0:
                                                            mov
            code.c
                          2:
                                01 f0
                                                                   %esi,%eax
                                                            add
                           4: 01 05 00 00 00 00
                                                                   %eax, 0x0 (%rip)
                                                            add
                                c3
                                                            retq
```

```
int accum = 0;
                         $ objdump -d code.o
                                file format elf64-x86-64
int sum(int x, int y)
                       code.o:
        int t = x + y;
                         Disassembly of section .text:
        accum += t;
        return t;
                         00000000000000 <sum>:
                                                                      %edi,%eax
                                                              mov
                                 move the first argument
            code.c
                                                                      %esi,%eax
                                                               add
                                 (edi) to the return
                                                                      %eax, 0x0 (%rip)
                            4:
                                 value (eax)
                                                               add
                                  c3
                                                               retq
                            a:
```

```
int accum = 0;
                         $ objdump -d code.o
                                 file format elf64-x86-64
int sum(int x, int y)
                       code.o:
        int t = x + y;
                         Disassembly of section .text:
        accum += t;
        return t;
                         000000000000000 <sum>:
                                                                      %edi,%eax
                                                               mov
                                  add the second argument
            code.c
                            2:
                                                                      %esi,%eax
                                                               add
                                  (esi) to the return
                                                                      %eax, 0x0 (%rip)
                            4:
                                  value (eax)
                                                               add
                                  c3
                                                               retq
                            a:
```

```
$ objdump -d code.o
int accum = 0;
                                 file format elf64-x86-64
int sum(int x, int y)
                       code.o:
        int t = x + y;
                         Disassembly of section .text:
        accum += t;
        return t;
                         000000000000000 <sum>:
                            0:
                                                                      %edi,%eax
                                                              mov
            code.c
                            2:
                                                                      %esi,%eax
                                                               add
                                 add eax to a location.
                            4:
                                                                      %eax, 0x0 (%rip)
                                                               add
                                  c3
                                                               retq
                            a:
```

```
$ objdump -d code.o
int accum = 0;
                                file format elf64-x86-64
int sum(int x, int y)
                       code.o:
        int t = x + y;
                        Disassembly of section .text:
        accum += t;
        return t;
                         000000000000000 <sum>:
                            0:
                                                                      %edi,%eax
                                                              mov
            code.c
                            2:
                                                              add
                                                                      %esi,%eax
                                 return
                                                                      %eax, 0x0 (%rip)
                            4:
                                                              add
                                  c3
                                                              retq
                            a:
```

```
int accum = 0;
int sum(int x, int y)
{
    int t = x + y;
    accum += t;
    return t;
}
```

Review

```
int accum = 0;
int sum(int x, int y)
{
    int t = x + y;
    accum += t;
    return t;
}
```

• Load: copy some bytes from memory to a register

```
int accum = 0;
int sum(int x, int y)
{
    int t = x + y;
    accum += t;
    return t;
}
```

- Load: copy some bytes from memory to a register
- Store: copy some bytes from a register to memory

```
int accum = 0;
int sum(int x, int y)
{
    int t = x + y;
    accum += t;
    return t;
}
```

- Load: copy some bytes from memory to a register
- Store: copy some bytes from a register to memory
- Update: copy the contents of two registers to the ALU, which does some calculation and stores the result in a register

```
int accum = 0;
int sum(int x, int y)
{
    int t = x + y;
    accum += t;
    return t;
}
```

- Load: copy some bytes from memory to a register
- Store: copy some bytes from a register to memory
- Update: copy the contents of two registers to the ALU, which does some calculation and stores the result in a register
- I/O operations: read/write from an I/O device into a register

```
int accum = 0;
int sum(int x, int y)
{
    int t = x + y;
    accum += t;
    return t;
}
```

- Load: copy some bytes from memory to a register
- Store: copy some bytes from a register to memory
- Update: copy the contents of two registers to the ALU, which does some calculation and stores the result in a register
- I/O operations: read/write from an I/O device into a register
- Jump: Set the pc to be some arbitrary value

Review

clang -02 -o prog code.o main.c

```
0000000000401110 <sum>:
  401110:89 f8
                                             %edi,%eax
                                     mov
  401112:01 f0
                                             %esi,%eax
                                      add
  401114:01 05 12 2f 00 00
                                      add
                                             %eax, 0x2f12(%rip)
                                                                       # 40402c <accum>
  40111a:c3
                                      retq
  40111b: 0f 1f 44 00 00
                                             0x0(%rax,%rax,1)
                                      nopl
0000000000401120 <main>:
  401120:bf 01 00 00 00
                                             $0x1,%edi
                                      mov
                                                            mov 1 to edi
  401125:be 03 00 00 00
                                             $0x3,%esi
                                      mov
  40112a:e9 e1 ff ff
                                             401110 <sum>
                                      jmpq
  40112f:90
                                      nop
```

```
0000000000401110 <sum>:
  401110:89 f8
                                             %edi,%eax
                                     mov
  401112:01 f0
                                             %esi,%eax
                                      add
  401114:01 05 12 2f 00 00
                                      add
                                             %eax, 0x2f12(%rip)
                                                                       # 40402c <accum>
  40111a:c3
                                      retq
  40111b: 0f 1f 44 00 00
                                             0x0(%rax,%rax,1)
                                      nopl
0000000000401120 <main>:
  401120:bf 01 00 00 00
                                             $0x1,%edi
                                      mov
                                                            mov 3 to esi
  401125:be 03 00 00 00
                                             $0x3,%esi
                                      mov
  40112a:e9 e1 ff ff
                                             401110 <sum>
                                      jmpq
  40112f:90
                                      nop
```

```
0000000000401110 <sum>:
  401110:89 f8
                                             %edi,%eax
                                     mov
  401112:01 f0
                                             %esi,%eax
                                      add
  401114:01 05 12 2f 00 00
                                      add
                                             %eax, 0x2f12(%rip)
                                                                       # 40402c <accum>
  40111a:c3
                                      retq
  40111b: 0f 1f 44 00 00
                                             0x0(%rax,%rax,1)
                                      nopl
0000000000401120 <main>:
  401120:bf 01 00 00 00
                                             $0x1,%edi
                                      mov
                                                            jump to location 401110
  401125:be 03 00 00 00
                                             $0x3,%esi
                                      mov
  40112a:e9 e1 ff ff
                                             401110 <sum>
                                      jmpq
  40112f:90
                                      nop
```

Review

```
0000000000401110 <sum>:
  401110:89 f8
                                             %edi,%eax
                                     mov
  401112:01 f0
                                             %esi,%eax
                                     add
  401114:01 05 12 2f 00 00
                                             %eax, 0x2f12(%rip)
                                     add
  40111a:c3
                                     retq
  40111b:0f 1f 44 00 00
                                             0x0(%rax,%rax,1)
                                     nopl
0000000000401120 <main>:
  401120:bf 01 00 00 00
                                             $0x1,%edi
                                     mov
  401125:be 03 00 00 00
                                             $0x3,%esi
                                     mov
  40112a:e9 e1 ff ff
                                             401110 <sum>
                                      jmpq
  40112f:90
                                     nop
```

40402c <accum>
The global variable has been assigned a location 40402c

Separate Compilation

Review compiler file1.o file1.c preprocessor assembler ./exec linker file2.c compiler file2.o assembler preprocessor

Separate Compilation

Review compiler file1.o file1.c assembler preprocessor ./exec linker • every .o file provides compiler file2.o file2.c assembler preprocessor some functions • linker links all the functions together • finds main

Review

• C is compiled to a low-level language called assembly language.

- C is compiled to a low-level language called assembly language.
 - Assembly language expresses a sequence of CPU instructions.

- C is compiled to a low-level language called assembly language.
 - Assembly language expresses a sequence of CPU instructions.
- The assembly language is assembled by an assembler to machine code (byte sequences).

- C is compiled to a low-level language called assembly language.
 - Assembly language expresses a sequence of CPU instructions.
- The assembly language is assembled by an assembler to machine code (byte sequences).
- Disassembler does the opposite.

- C is compiled to a low-level language called assembly language.
 - Assembly language expresses a sequence of CPU instructions.
- The assembly language is assembled by an assembler to machine code (byte sequences).
- Disassembler does the opposite.
- CPU executes instructions in a loop from power-on to power-off

- C is compiled to a low-level language called assembly language.
 - Assembly language expresses a sequence of CPU instructions.
- The assembly language is assembled by an assembler to machine code (byte sequences).
- Disassembler does the opposite.
- CPU executes instructions in a loop from power-on to power-off
- A CPU core contains an ALU and a number of registers (and other stuff).

Process Memory

000000000000000

• When you run ./prog arg1 arg2 arg3, a *loader* puts the content of prog into memory, and:

- When you run ./prog arg1 arg2 arg3, a *loader* puts the content of prog into memory, and:
 - Moves the pc to the first instruction in prog

- When you run ./prog arg1 arg2 arg3, a *loader* puts the content of prog into memory, and:
 - Moves the pc to the first instruction in prog
 - Initializes the stack

- When you run ./prog arg1 arg2 arg3, a loader puts the content of prog into memory, and:
 - Moves the pc to the first instruction in prog
 - Initializes the stack
 - Copies the command-line arguments into memory

- When you run ./prog arg1 arg2 arg3, a loader puts the content of prog into memory, and:
 - Moves the pc to the first instruction in prog
 - Initializes the stack
 - Copies the command-line arguments into memory

•

Activity Monitor All Processes	×		J Memory E	Energy Disk	Netwo	ork	Q Sea	rch
Process Name		Memory	v	Threads	Ports	PID	User	
https://www.gradescope.com			1.80 GB	4	93	17547	byron	
WindowServer			1.54 GB	24	3,883	150	_windowserver	
Keynote			971.9 MB	7	813	17566	byron	
Music			871.5 MB	26	1,940	13588	byron	
https://canvas.uchicago.edu			799.5 MB	5	140	17545	byron	
Preview			535.1 MB	4	447	16935	byron	
Finder			518.1 MB	7	957	478	byron	
Safari			419.9 MB	9	3,624	439	byron	
Terminal			397.2 MB	6	327	442	byron	
QuickLookUIService (Messages)			305.9 MB	7	348	17251	byron	
Slack Helper (Renderer)			289.7 MB	21	246	893	byron	
https://www.google.com			271.2 MB	3	93	18017	byron	
Messages			218.3 MB	4	740	13651	byron	
1Password Safari Web Extension			215 2 MR	4	88	917	hyron	
	MEMORY	PRESSURE	Physical Mer	nory: 32.00	GB			
			Memory Use	d: 22.76	GB	App Memory		
			Cached Files	: 9.54	GB	Wired Memo		
			Swap Used:	0 by	ytes			

Your computer can do many things at the same time...

 The operating system creates an illusion that each process is running by itself by:

- The operating system creates an illusion that each process is running by itself by:
 - Context switching -- rapidly switching which process has control over the CPU

- The operating system creates an illusion that each process is running by itself by:
 - Context switching -- rapidly switching which process has control over the CPU
 - Virtual memory -- providing each process with its own address space

process 1										process 2															
										pro	ces	s 3													
																				,					

What if process 1 needs more memory?

process 1									process 2																	
												pro	ces	ss 3												

What if process 1 needs more memory?

process 1											process 2															
							_				pro	ces	s 3													

What if process 1 needs more memory?

process 1												process 2														
											pro	ces	s 3													

What if process 1 needs more memory?

What if process 1 is buggy or malicious?

Physical memory

What if process 1 is buggy or malicious?

Physical memory

19

Physical memory

Physical memory

- CPU can do this translation very efficiently
- The chunks of memory used to be called *segments*.

- CPU can do this translation very efficiently
- The chunks of memory used to be called *segments*.
- segmentation fault!

Each process has its own

- Each process has its own
 - Virtual memory

- Each process has its own
 - Virtual memory
 - Registers

- Each process has its own
 - Virtual memory
 - Registers
 - Program counter

- Each process has its own
 - Virtual memory
 - Registers
 - Program counter
 - •

- Each process has its own
 - Virtual memory
 - Registers
 - Program counter
 - •
- OS keeps track of these data in its internal data structure.

Activity Monitor All Processes	× i	···· ∨	CPU Memory	Energy Disk	Netwo	ork	Q	S ea
Process Name		Memo	ory ~	Threads	Ports	PID	User	
https://www.gradescope.com			1.80 GB	4	93	17547	byron	
WindowServer			1.54 GB	24	3,883	150	_windowserver	r
<u>†</u> Keynote			971.9 MB	7	813	17566	byron	
Music			871.5 MB	26	1,940	13588	byron	
https://canvas.uchicago.edu			799.5 MB	5	140	17545	byron	
Preview			535.1 MB	4	447	16935	byron	
Finder			518.1 MB	7	957	478	byron	
Safari			419.9 MB	9	3,624	439	byron	
* Terminal			397.2 MB	6	327	442	byron	
QuickLookUIService (Messages)			305.9 MB	7	348	17251	byron	
Slack Helper (Renderer)			289.7 MB	21	246	893	byron	
https://www.google.com			271.2 MB	3	93	18017	byron	
Messages			218.3 MB	4	740	13651	byron	
1Password Safari Weh Extension			215 2 MR	Δ	88	917	hvron	
	MEMORY	PRESSURE	Physical Me	emory: 32.0	0 GB			
			Memory Us	sed: 22.7	6 GB	App Memor		
			Cached File	es: 9.5	4 GB	Wired Memo	-	
			Swap Used	: 0	bytes	•		

Activity Monitor All Processes	× i		Memory	Energy Dis	k Netwo	ork	Q Sea	arch
Process Name		Memory	~	Threads	Ports	PID	User	
https://www.gradescope.com			1.80 GB	4	93	17547	byron	
WindowServer			1.54 GB	24	3,883	150	_windowserver	
Keynote			971.9 MB	7	813	17566	byron	
Music			871.5 MB	26	1,940	13588	byron	
https://canvas.uchicago.edu			799.5 MB	5	140	17545	byron	
Rreview			535.1 MB	4	447	16935	byron	
Finder			518.1 MB	7	957	478	byron	
Safari			419.9 MB	9	3,624	439	byron	
Terminal			397.2 MB	6	327	442	byron	
QuickLookUIService (Messages)			305.9 MB	7	348	17251	byron	
Slack Helper (Renderer)			289.7 MB	21	246	893	byron	
https://www.google.com			271.2 MB	3	93	18017	byron	
Messages			218.3 MB	4	740	13651	byron	
1Password Safari Weh Extension			215 2 MR	4	88	917	hvron	
	MEMORY	PRESSURE	Physical Me	mory: 32.	00 GB			
			Memory Us	ed: 22.	/6 GB <	App Memory Wired Memory		
			Cached File		54 GB	Compressed	-	
			Swap Used:	С	bytes			

• A thread is a unit of execution. Each thread has its own:

- A thread is a unit of execution. Each thread has its own:
 - Thread ID

- A thread is a unit of execution. Each thread has its own:
 - Thread ID
 - Stack

- A thread is a unit of execution. Each thread has its own:
 - Thread ID
 - Stack
 - Program counter (pc)

- A thread is a unit of execution. Each thread has its own:
 - Thread ID
 - Stack
 - Program counter (pc)
 - Registers

- A thread is a unit of execution. Each thread has its own:
 - Thread ID
 - Stack
 - Program counter (pc)
 - Registers
- A process contains a number of threads. Threads within a process share:

- A thread is a unit of execution. Each thread has its own:
 - Thread ID
 - Stack
 - Program counter (pc)
 - Registers
- A process contains a number of threads. Threads within a process share:
 - Code, data

- A thread is a unit of execution. Each thread has its own:
 - Thread ID
 - Stack
 - Program counter (pc)
 - Registers
- A process contains a number of threads. Threads within a process share:
 - Code, data
- Threads are executed concurrently.

• In C, threads are managed by a library called pthread

Creation

```
#include <pthread.h>
#include <stdio.h>
void *thread(void *data);
int main()
        pthread t tid;
        pthread create (&tid, NULL, thread, "hello, world!");
        pthread join(tid, NULL);
        return 0;
void *thread(void *data)
        char *str = data;
        printf("%s\n", str);
        return NULL;
```

Creation

```
#include <pthread.h>
#include <stdio.h>
void *thread(void *data);
int main()
        pthread t tid;
        pthread create(&tid, NULL, thread, "hello, world!");
        pthread join(tid, NULL);
        return 0;
void *thread(void *data)
        char *str = data;
        printf("%s\n", str);
        return NULL;
```

launches a new thread

#include <pthread.h>

Creation

```
#include <stdio.h>
void *thread(void *data);
int main()
        pthread t tid;
        pthread create(&tid, NULL, thread, "hello, world!");
        pthread join(tid, NULL);
        return 0;
void *thread(void *data)
        char *str = data;
        printf("%s\n", str);
        return NULL;
```

waits for the thread to terminate

Creation

```
#include <pthread.h>
#include <stdio.h>
void *thread(void *data);
int main()
        pthread t tid;
        pthread create (&tid, NULL, thread, "hello, world!");
        pthread join(tid, NULL);
        return 0;
void *thread(void *data)
        char *str = data;
        printf("%s\n", str);
        return NULL;
```

function to run

Creation

Creation

pthread_create creates a new thread and immediately starts running the thread.

int

Creation

Once created, each thread is assigned a thread ID by the OS.

Creation

Thread attribute.
Almost always just
NULL

Creation

Creation

The argument to the function. Similar to the data pointer in *_walk

Creation

```
int
pthread_join(pthread_t thread, void **value_ptr);
```

Demo

Moral: slowprimes.c

- C is so much better than Python at number crunching
- If a problem can be broken down into disjoint subproblems, parallelism shortens the running time by a lot

Moral: primes.c

- The best kind of performance improvement is algorithmic improvement -- the one that improves the asymptotic running time.
- Thread creation has its own cost. This cost needs to be factored in when one decides whether to use concurrency.
- Multithreading loses some benefit when the problem cannot be cleanly sliced into subproblems
- Multithreading code is usually a lot more complicated than single-threaded code.

Moral: badcnt.c

- Concurrency bug can happen when threads share resources.
- Threads do not have its own virtual memory space like processes do
 - Memory access is not atomic -- x += 1 is three separate steps
 - Read x to a register (load)
 - Increment the register (update)
 - Write the register to memory (store)
 - Memory updates need to be synchronized

Moral: goodcnt.c

- Synchronization can be done via semaphores (e.g. locks)
 - pthread mutex lock waits the value to be positive
 - pthread_mutex_unlock increments the value
- Synchronized code is not parallel:(

Moral: bomb.c

- Asynchronous I/O
- Semaphores can be used to indicate the readiness of a value

When should I use threads?

- Spot parallelizable code
 - Code that doesn't depend on other's result
 - E.g. loop where each iteration is independent
- Beware of concurrency bugs
 - Read-write conflict
 - Write-write conflict
 - Semaphore

badcnt.c

```
/* shared variable */
unsigned int cnt = 0;
void *count(void *);
int main(void)
        pthread_t tid1, tid2;
        pthread create (&tid1, NULL, count, NULL);
        pthread create(&tid2, NULL, count, NULL);
        pthread join(tid1, NULL);
        pthread join(tid2, NULL);
        if (cnt == N * 2) {
                printf("OK cnt=%u\n", cnt);
        } else
                printf("BOOM cnt=%u\n", cnt);
        return 0;
```

badcnt.c

Arithmetic and Logical Unit

Registers

Core

Arithmetic and Logical Unit

```
cnt
0
```

badcnt.c

Arithmetic and Logical Unit

Registers

0

Core

Arithmetic and Logical Unit

```
cnt
0
```

badcnt.c

Arithmetic and Logical Unit

Registers

1

Core

Arithmetic and Logical Unit

```
cnt
0
```

badcnt.c

Arithmetic and Logical Unit

Registers

1

Core

Arithmetic and Logical Unit

```
cnt
1
```

badcnt.c

Arithmetic and Logical Unit

Registers

Core

Arithmetic and Logical Unit

Registers

```
cnt
1
```

badcnt.c

Arithmetic and Logical Unit

Registers

T

Core

Arithmetic and Logical Unit

Registers

```
cnt
1
```

badcnt.c

Arithmetic and Logical Unit

Registers

1

Core

Arithmetic and Logical Unit

Registers

```
cnt 2
```

badcnt.c

Arithmetic and Logical Unit

Registers

Core

Arithmetic and Logical Unit

```
cnt
10
```

badcnt.c

Arithmetic and Logical Unit

Registers

10

Core

Arithmetic and Logical Unit

Registers

```
cnt
10
```

badcnt.c

Arithmetic and Logical Unit

Registers

11

Core

Arithmetic and Logical Unit

Registers

```
cnt
10
```

badcnt.c

Arithmetic and Logical Unit

Registers

11

Core

Arithmetic and Logical Unit

Registers

```
cnt
11
```

goodcnt.c

Core

Arithmetic and Logical Unit

Registers

11

Core

Arithmetic and Logical Unit

Registers

```
cnt
11
```

goodcnt.c

Core

Arithmetic and Logical Unit

Registers

11

Core

Arithmetic and Logical Unit

Registers

11

```
cnt
11
```

pthread_mutex_lock "locks" cnt, if it is already locked, pthread_mutex_lock will wait

goodcnt.c

Core

Arithmetic and Logical Unit

Registers

11

Core

Arithmetic and Logical Unit

Registers

```
cnt
11
```

- pthread_mutex_lock "locks" cnt, if it is already locked, pthread_mutex_lock will wait
- pthread_mutex unlock "unlocks" cnt

goodcnt.c

Core

Arithmetic and Logical Unit

Registers

11

Core

Arithmetic and Logical Unit

Registers

```
cnt
11
```

- pthread_mutex_lock "locks" cnt, if it is already locked, pthread_mutex_lock will wait
- pthread mutex unlock "unlocks" cnt
- Each loop now becomes

goodcnt.c

Core

Arithmetic and Logical Unit

Registers

11

Core

Arithmetic and Logical Unit

Registers

```
cnt
11
```

- pthread_mutex_lock "locks" cnt, if it is already locked, pthread_mutex_lock will wait
- pthread mutex unlock "unlocks" cnt
- Each loop now becomes
 - lock

goodcnt.c

Core

Arithmetic and Logical Unit

Registers

11

Core

Arithmetic and Logical Unit

Registers

11

cnt 11

- pthread_mutex_lock "locks" cnt, if it is already locked, pthread_mutex_lock will wait
- pthread_mutex_unlock "unlocks" cnt
- Each loop now becomes
 - lock
 - read cnt

goodcnt.c

Core

Arithmetic and Logical Unit

Registers

11

Core

Arithmetic and Logical Unit

Registers

11

cnt 11

- pthread_mutex_lock "locks" cnt, if it is already locked, pthread_mutex_lock will wait
- pthread mutex unlock "unlocks" cnt
- Each loop now becomes
 - lock
 - read cnt
 - incr

goodcnt.c

Core

Arithmetic and Logical Unit

Registers

11

Core

Arithmetic and Logical Unit

Registers

```
cnt
11
```

- pthread_mutex_lock "locks" cnt, if it is already locked, pthread_mutex_lock will wait
- pthread mutex unlock "unlocks" cnt
- Each loop now becomes
 - lock
 - read cnt
 - incr
 - write to cnt

goodcnt.c

Core

Arithmetic and Logical Unit

Registers

11

Core

Arithmetic and Logical Unit

Registers

11

cnt 11

- pthread_mutex_lock "locks" cnt, if it is already locked, pthread_mutex_lock will wait
- pthread mutex unlock "unlocks" cnt
- Each loop now becomes
 - lock
 - read cnt
 - incr
 - write to cnt
 - unlock

goodcnt.c

Core

Arithmetic and Logical Unit

Registers

11

Core

Arithmetic and Logical Unit

Registers

11

cnt 11

- pthread_mutex_lock "locks" cnt, if it is already locked, pthread_mutex_lock will wait
- pthread_mutex_unlock "unlocks" cnt
- Each loop now becomes
 - lock
 - read cnt
 - incr
 - write to cnt
 - unlock
- No other thread will touch the number between reading and writing