
Konstantinos Ameranis, July 28

Hash Table
CS143: lecture 15

Hashing
Turning any value into an integer

Hashing

• A hash function maps a key to an integer deterministically:

Turning any value into an integer

Hashing

• A hash function maps a key to an integer deterministically:

• I.e. the same key is always turned into the same integer

Turning any value into an integer

Hashing

• A hash function maps a key to an integer deterministically:

• I.e. the same key is always turned into the same integer

• Hash functions should run in timeO(1)

Turning any value into an integer

Hashing

• A hash function maps a key to an integer deterministically:

• I.e. the same key is always turned into the same integer

• Hash functions should run in timeO(1)
• There are good/bad choices for hash functions

Turning any value into an integer

Hashing
Example: 2-letter word dictionary

Hashing

• Map 2-letter words to definitions:

Example: 2-letter word dictionary

Hashing

• Map 2-letter words to definitions:

• Key: 2-letter words (string)

Example: 2-letter word dictionary

Hashing

• Map 2-letter words to definitions:

• Key: 2-letter words (string)

• Value: definitions (string)

Example: 2-letter word dictionary

Hashing

• Map 2-letter words to definitions:

• Key: 2-letter words (string)

• Value: definitions (string)

Example: 2-letter word dictionary

ah: used to express delight, relief, regret, or contempt

as: to the same degree or amount

at: used as a function word to indicate presence or occurrence in, on, or near

do: to bring to pass

go: to move on a course

ha: used especially to express surprise, joy, or triumph

he: that male one who is neither speaker nor hearer

hi: used especially as a greeting

...

Hashing

• Map 2-letter words to definitions:

• Key: 2-letter words (string)

• Value: definitions (string)

• What hash function could we use to map keys to ints?

Example: 2-letter word dictionary

ah: used to express delight, relief, regret, or contempt

as: to the same degree or amount

at: used as a function word to indicate presence or occurrence in, on, or near

do: to bring to pass

go: to move on a course

ha: used especially to express surprise, joy, or triumph

he: that male one who is neither speaker nor hearer

hi: used especially as a greeting

...

Hashing
Example: 2-letter word dictionary

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hashing

• How many 2-letter words are there?

Example: 2-letter word dictionary

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hashing

• How many 2-letter words are there?

• 26 * 26 = 676

Example: 2-letter word dictionary

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hashing

• How many 2-letter words are there?

• 26 * 26 = 676

• How to map words into [0, 676)?

Example: 2-letter word dictionary

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hashing

• How many 2-letter words are there?

• 26 * 26 = 676

• How to map words into [0, 676)?

• Idea: map a-z: 0-25

Example: 2-letter word dictionary

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hashing

• How many 2-letter words are there?

• 26 * 26 = 676

• How to map words into [0, 676)?

• Idea: map a-z: 0-25

• then, first letter's number * 26 + second letter's number

Example: 2-letter word dictionary

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hashing

• How many 2-letter words are there?

• 26 * 26 = 676

• How to map words into [0, 676)?

• Idea: map a-z: 0-25

• then, first letter's number * 26 + second letter's number

Example: 2-letter word dictionary

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hashing

• How many 2-letter words are there?

• 26 * 26 = 676

• How to map words into [0, 676)?

• Idea: map a-z: 0-25

• then, first letter's number * 26 + second letter's number

• hash(αβ) = 26α + β

Example: 2-letter word dictionary

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hashing

• How many 2-letter words are there?

• 26 * 26 = 676

• How to map words into [0, 676)?

• Idea: map a-z: 0-25

• then, first letter's number * 26 + second letter's number

• hash(αβ) = 26α + β

• hash(go) = 26 ⋅ 6 + 14 = 170

Example: 2-letter word dictionary

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hashing
Example: 2-letter word dictionary

Hashing

• Example!

Example: 2-letter word dictionary

Hashing
Problem

Word Letters

Longest chemical 189,819

Longest word in Merriam-Webster 45

Supercalifragilisticexpialidocious 34

Longest word in Shakespeare’s works 27

Hashing

• Can we extend this function to work for all words?

Problem

Word Letters

Longest chemical 189,819

Longest word in Merriam-Webster 45

Supercalifragilisticexpialidocious 34

Longest word in Shakespeare’s works 27

https://en.wikipedia.org/wiki/Longest_word_in_English

Hashing

• Can we extend this function to work for all words?

• https://en.wikipedia.org/wiki/Longest_word_in_English

Problem

Word Letters

Longest chemical 189,819

Longest word in Merriam-Webster 45

Supercalifragilisticexpialidocious 34

Longest word in Shakespeare’s works 27

https://en.wikipedia.org/wiki/Longest_word_in_English

Hashing

• Can we extend this function to work for all words?

• https://en.wikipedia.org/wiki/Longest_word_in_English

Problem

Word Letters

Longest chemical 189,819

Longest word in Merriam-Webster 45

Supercalifragilisticexpialidocious 34

Longest word in Shakespeare’s works 27

https://en.wikipedia.org/wiki/Longest_word_in_English

Hashing

• Can we extend this function to work for all words?

• https://en.wikipedia.org/wiki/Longest_word_in_English

Problem

Word Letters

Longest chemical 189,819

Longest word in Merriam-Webster 45

Supercalifragilisticexpialidocious 34

Longest word in Shakespeare’s works 27

https://en.wikipedia.org/wiki/Longest_word_in_English

Hashing

• Can we extend this function to work for all words?

• https://en.wikipedia.org/wiki/Longest_word_in_English

Problem

Word Letters

Longest chemical 189,819

Longest word in Merriam-Webster 45

Supercalifragilisticexpialidocious 34

Longest word in Shakespeare’s works 27

https://en.wikipedia.org/wiki/Longest_word_in_English

Hashing

• Can we extend this function to work for all words?

• https://en.wikipedia.org/wiki/Longest_word_in_English

Problem

Word Letters

Longest chemical 189,819

Longest word in Merriam-Webster 45

Supercalifragilisticexpialidocious 34

Longest word in Shakespeare’s works 27

https://en.wikipedia.org/wiki/Longest_word_in_English

Hashing

• Can we extend this function to work for all words?

• https://en.wikipedia.org/wiki/Longest_word_in_English

Problem

Word Letters

Longest chemical 189,819

Longest word in Merriam-Webster 45

Supercalifragilisticexpialidocious 34

Longest word in Shakespeare’s works 27

https://en.wikipedia.org/wiki/Longest_word_in_English

Hashing

• Can we extend this function to work for all words?

• https://en.wikipedia.org/wiki/Longest_word_in_English

• 2627 = 160059109085386090080713531498405298176

Problem

Word Letters

Longest chemical 189,819

Longest word in Merriam-Webster 45

Supercalifragilisticexpialidocious 34

Longest word in Shakespeare’s works 27

https://en.wikipedia.org/wiki/Longest_word_in_English

Hashing
Problem

Hashing

• 2627 = 160059109085386090080713531498405298176

Problem

Hashing

• 2627 = 160059109085386090080713531498405298176
• Too big for an array!

Problem

Hashing

• 2627 = 160059109085386090080713531498405298176
• Too big for an array!

• Also, English has ~700,000 words; we only need a tiny fraction of these.

Problem

Hashing

• 2627 = 160059109085386090080713531498405298176
• Too big for an array!

• Also, English has ~700,000 words; we only need a tiny fraction of these.

• Solution: Compress

Problem

Hashing
Compression

Hashing

• Generally, hash functions do not care about its output range.

Compression

Hashing

• Generally, hash functions do not care about its output range.

• We use a compression function to put the integer in the reasonable range
[0,size)

Compression

Hashing

• Generally, hash functions do not care about its output range.

• We use a compression function to put the integer in the reasonable range
[0,size)

• Common choice: modulus

Compression

Hashing

• Generally, hash functions do not care about its output range.

• We use a compression function to put the integer in the reasonable range
[0,size)

• Common choice: modulus

• a % b calculates the remainder of a divided by b

Compression

Hashing

• Generally, hash functions do not care about its output range.

• We use a compression function to put the integer in the reasonable range
[0,size)

• Common choice: modulus

• a % b calculates the remainder of a divided by b

• a % b always returns an int in the range [0, b)

Compression

Hashing
Compression example

0

1

2

3

4

5

6

7

8

9

Hashing

• Keys: integer

Compression example
0

1

2

3

4

5

6

7

8

9

Hashing

• Keys: integer

• Table size: 10

Compression example
0

1

2

3

4

5

6

7

8

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

Compression example
0

1

2

3

4

5

6

7

8

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

Compression example
0

1

2

3

4

5

6

7

8

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

Compression example
0

1

2

3

4

5

6

7

8

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

Compression example
0

1

2

3

4

5

6

7 7

8

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

Compression example
0

1

2

3

4

5

6

7 7

8 18

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

Compression example
0

1 41

2

3

4

5

6

7 7

8 18

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

•

Compression example
0

1 41

2

3

4

5 35

6

7 7

8 18

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

• What if we try to insert 75?

Compression example
0

1 41

2

3

4

5 35

6

7 7

8 18

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

• What if we try to insert 75?

Compression example
0

1 41

2

3

4

5 35

6

7 7

8 18

9

75

Hashing
Collision

Hashing

• Two different keys sometimes end up in the same slot

Collision

Hashing

• Two different keys sometimes end up in the same slot

• This is called a collision

Collision

Hashing

• Two different keys sometimes end up in the same slot

• This is called a collision

• Collision has to happen if we have smaller array than the range of hash
function

Collision

Hashing

• Two different keys sometimes end up in the same slot

• This is called a collision

• Collision has to happen if we have smaller array than the range of hash
function

• Hash function could produce the same integer for two different keys

Collision

Hashing

• Two different keys sometimes end up in the same slot

• This is called a collision

• Collision has to happen if we have smaller array than the range of hash
function

• Hash function could produce the same integer for two different keys

• Compression merges different hashes together

Collision

Hashing

• Two different keys sometimes end up in the same slot

• This is called a collision

• Collision has to happen if we have smaller array than the range of hash
function

• Hash function could produce the same integer for two different keys

• Compression merges different hashes together

• All tables need to handle collision

Collision

Hashing
Handling Collision

Hashing

1. Avoid collisions when possible:

Handling Collision

Hashing

1. Avoid collisions when possible:

1. Pick a good hash function (e.g. strlen is a terrible hash function)

Handling Collision

Hashing

1. Avoid collisions when possible:

1. Pick a good hash function (e.g. strlen is a terrible hash function)

2. Pick a good table size

Handling Collision

Hashing

1. Avoid collisions when possible:

1. Pick a good hash function (e.g. strlen is a terrible hash function)

2. Pick a good table size

2. When they arise (inevitably):

Handling Collision

Hashing

1. Avoid collisions when possible:

1. Pick a good hash function (e.g. strlen is a terrible hash function)

2. Pick a good table size

2. When they arise (inevitably):

1. Have a way to put collisions in a table.

Handling Collision

Hashing
Picking a good hash function

Hashing

• Minimize collision:

Picking a good hash function

Hashing

• Minimize collision:

• What is the worst possible hash function?

Picking a good hash function

Hashing

• Minimize collision:

• What is the worst possible hash function?

• hash(k) = 1

Picking a good hash function

Hashing

• Minimize collision:

• What is the worst possible hash function?

• hash(k) = 1

• What is the best possible hash function?

Picking a good hash function

Hashing

• Minimize collision:

• What is the worst possible hash function?

• hash(k) = 1

• What is the best possible hash function?

• Every input maps to a distinct output, f(x) = f(y) ⟹ x = y

Picking a good hash function

Hashing

• Minimize collision:

• What is the worst possible hash function?

• hash(k) = 1

• What is the best possible hash function?

• Every input maps to a distinct output, f(x) = f(y) ⟹ x = y
• This is called perfect hashing. The two-letter hash function is a perfect hash

function.

Picking a good hash function

Hashing
Picking a good hash function (Example)

Hashing

• If we want to hash UChicago students:

Picking a good hash function (Example)

Hashing

• If we want to hash UChicago students:

• Use their birthdays

Picking a good hash function (Example)

Hashing

• If we want to hash UChicago students:

• Use their birthdays

• Month (Jan, Feb, Mar, ...)?

Picking a good hash function (Example)

Hashing

• If we want to hash UChicago students:

• Use their birthdays

• Month (Jan, Feb, Mar, ...)?

• Age (0, 1, 2, ..., 100)?

Picking a good hash function (Example)

Hashing

• If we want to hash UChicago students:

• Use their birthdays

• Month (Jan, Feb, Mar, ...)?

• Age (0, 1, 2, ..., 100)?

• Day of month (1, 2, 3, ..., 31)?

Picking a good hash function (Example)

Hashing

• If we want to hash UChicago students:

• Use their birthdays

• Month (Jan, Feb, Mar, ...)?

• Age (0, 1, 2, ..., 100)?

• Day of month (1, 2, 3, ..., 31)?

• Use their first name

Picking a good hash function (Example)

Hashing

• If we want to hash UChicago students:

• Use their birthdays

• Month (Jan, Feb, Mar, ...)?

• Age (0, 1, 2, ..., 100)?

• Day of month (1, 2, 3, ..., 31)?

• Use their first name

• Use their last name

Picking a good hash function (Example)

Hashing

• If we want to hash UChicago students:

• Use their birthdays

• Month (Jan, Feb, Mar, ...)?

• Age (0, 1, 2, ..., 100)?

• Day of month (1, 2, 3, ..., 31)?

• Use their first name

• Use their last name

• Use their student ID

Picking a good hash function (Example)

Hashing
Picking a good hash function

Hashing

• A good hash function should be:

Picking a good hash function

Hashing

• A good hash function should be:

• fast

Picking a good hash function

Hashing

• A good hash function should be:

• fast

• collision with (extremely) low probability

Picking a good hash function

Hashing

• A good hash function should be:

• fast

• collision with (extremely) low probability

• spreads out the keys

Picking a good hash function

Hashing

• A good hash function should be:

• fast

• collision with (extremely) low probability

• spreads out the keys

• CS284: Cryptography

Picking a good hash function

Hash Table
Recap

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

O(1)

Recap

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

O(1)

• We have a way to turn anything into an integer -- hash function

Recap

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

O(1)

• We have a way to turn anything into an integer -- hash function

• We have a way to force any integers into a reasonable range -- compression
(usually modulus)

Recap

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

O(1)

• We have a way to turn anything into an integer -- hash function

• We have a way to force any integers into a reasonable range -- compression
(usually modulus)

• We need to handle collisions:

Recap

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

O(1)

• We have a way to turn anything into an integer -- hash function

• We have a way to force any integers into a reasonable range -- compression
(usually modulus)

• We need to handle collisions:

• Collisions can be the result of the hash function

Recap

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

O(1)

• We have a way to turn anything into an integer -- hash function

• We have a way to force any integers into a reasonable range -- compression
(usually modulus)

• We need to handle collisions:

• Collisions can be the result of the hash function

• ... of compression

Recap

Hash Table
Handling Collision

Hash Table

• Two approaches:

Handling Collision

Hash Table

• Two approaches:

1. Chaining

Handling Collision

Hash Table

• Two approaches:

1. Chaining

2. Probing

Handling Collision

Chaining

• Each slot is a list of key-value pairs, called a bucket
0

1 41

2

3

4

5 35

6

7 7

8 18

9

Chaining

• Each slot is a list of key-value pairs, called a bucket
0

1

2

3

4

5

6

7

8

9

41

35

7

18

Chaining

• Each slot is a list of key-value pairs, called a bucket
0

1

2

3

4

5

6

7

8

9

41

35

7

18

• You can use either list implementation

Chaining

• Each slot is a list of key-value pairs, called a bucket
0

1

2

3

4

5

6

7

8

9

41

35

7

18

• You can use either list implementation

• ...but there is an obvious choice

Chaining

• Each slot is a list of key-value pairs, called a bucket
0

1

2

3

4

5

6

7

8

9

41

35

7

18

• You can use either list implementation

• ...but there is an obvious choice

• linked list, because of deletion

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

• Collisions will be prepended into the list

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

• Collisions will be prepended into the list

45

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

• Collisions will be prepended into the list

45 15

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

• Collisions will be prepended into the list

45 15 65

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

insert(table, key, value):

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

insert(table, key, value):

bucket_idx = hash(key) % table->size

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

insert(table, key, value):

bucket_idx = hash(key) % table->size

if found key in table->buckets[bucket_idx]:

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

insert(table, key, value):

bucket_idx = hash(key) % table->size

if found key in table->buckets[bucket_idx]:

replace value

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

insert(table, key, value):

bucket_idx = hash(key) % table->size

if found key in table->buckets[bucket_idx]:

replace value

else:

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

insert(table, key, value):

bucket_idx = hash(key) % table->size

if found key in table->buckets[bucket_idx]:

replace value

else:

 add (key, value) into the list

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

insert(table, key, value):

bucket_idx = hash(key) % table->size

if found key in table->buckets[bucket_idx]:

replace value

else:

 add (key, value) into the list

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {
 void *key;

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {
 void *key;
 void *value;

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {
 void *key;
 void *value;
 struct bucket *next;

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {
 void *key;
 void *value;
 struct bucket *next;
};

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {
 void *key;
 void *value;
 struct bucket *next;
};

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[]; <<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {
 void *key;

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {
 void *key;
 void *value;

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {
 void *key;
 void *value;
 struct bucket *next;

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {
 void *key;
 void *value;
 struct bucket *next;
};

<<-- what is this?

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {
 void *key;
 void *value;
 struct bucket *next;
};

<<-- what is this?

Interlude

• The last element of a structure may have an incomplete array type (empty
bracket)

• sizeof does not include the incomplete field

• Why?

Flexible array member

Interlude: Flexible Array Member
Memory Layout
struct table {

 int size;

 int length;

 struct bucket **buckets;

};

struct table {

 int size;

 int length;

 struct bucket *buckets[];

};

Interlude: Flexible Array Member
Memory Layout
struct table {

 int size;

 int length;

 struct bucket **buckets;

};

struct table {

 int size;

 int length;

 struct bucket *buckets[];

};

table

int

struct bucket **

int

int

.size

.length

.buckets

Interlude: Flexible Array Member
Memory Layout
struct table {

 int size;

 int length;

 struct bucket **buckets;

};

struct table {

 int size;

 int length;

 struct bucket *buckets[];

};

table

int

struct bucket **

int

int

.size

.length

.buckets

table

int
int

int

.size

.length

.buckets

Interlude: Flexible Array Member
Memory Layout
struct table {

 int size;

 int length;

 struct bucket **buckets;

};

struct table {

 int size;

 int length;

 struct bucket *buckets[];

};

table

int

struct bucket **

int

int

.size

.length

.buckets

table

int
int

int

.size

.length

.buckets

Interlude: Flexible Array Member
Memory Layout
struct table {

 int size;

 int length;

 struct bucket **buckets;

};

struct table {

 int size;

 int length;

 struct bucket *buckets[];

};

table

int

struct bucket **

int

int

.size

.length

.buckets

table

int
int

int

.size

.length

.buckets

Interlude: Flexible Array Member
Memory Layout
struct table {

 int size;

 int length;

 struct bucket **buckets;

};

struct table {

 int size;

 int length;

 struct bucket *buckets[];

};

table

int

struct bucket **

int

int

.size

.length

.buckets

table

int
int

int

.size

.length

.buckets

Interlude: Flexible Array Member
Allocation
struct table {

 int size;

 int length;

 struct bucket **buckets;

};

struct table {

 int size;

 int length;

 struct bucket *buckets[];

};

int size = 1024;

struct table *t =

 malloc(sizeof(struct table)

 + size * sizeof(struct bucket*));

int size = 1024;

struct table *t =

 malloc(sizeof(struct table));

t->buckets =

 malloc(size * sizeof(struct bucket*));

Interlude: Flexible Array Member
Accessing t->buckets[3];

table

int

struct bucket **

int

int

.size

.length

.buckets

table

int
int

int

.size

.length

.buckets

t

Interlude: Flexible Array Member
Accessing t->buckets[3];

table

int

struct bucket **

int

int

.size

.length

.buckets

table

int
int

int

.size

.length

.buckets

t

Two jumps in memory

Interlude: Flexible Array Member
Accessing t->buckets[3];

table

int

struct bucket **

int

int

.size

.length

.buckets

table

int
int

int

.size

.length

.buckets

t

Two jumps in memory

Only one jump!

 *(t + 8 + i * size)

Interlude: Flexible Array Member

• The last element of a structure may have an incomplete array type (empty
bracket)

• sizeof does not include the incomplete field

• struct table *ptr = malloc(sizeof(struct table) + extra);

• Slight performance boost

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

45 15 65

find(table, key):

bucket_idx = hash(key) % table->size

find key in table->buckets[bucket_idx]:

Chaining
Time Complexity

Chaining

• What is complexity for accessing elements?

Time Complexity

Chaining

• What is complexity for accessing elements?

• O(length of the chain)

Time Complexity

Chaining

• What is complexity for accessing elements?

• O(length of the chain)
• What is the length of the chain in the worst case?

Time Complexity

Chaining

• What is complexity for accessing elements?

• O(length of the chain)
• What is the length of the chain in the worst case?

• O(n)

Time Complexity

Chaining

• What is complexity for accessing elements?

• O(length of the chain)
• What is the length of the chain in the worst case?

• O(n)

• This happens for a really bad hash function (e.g.)hash(k) = 1

Time Complexity

Chaining

• What is complexity for accessing elements?

• O(length of the chain)
• What is the length of the chain in the worst case?

• O(n)

• This happens for a really bad hash function (e.g.)hash(k) = 1
• What if we have a good hash function (that has uniform distribution over a range of

integers)?

Time Complexity

Chaining

• What is complexity for accessing elements?

• O(length of the chain)
• What is the length of the chain in the worst case?

• O(n)

• This happens for a really bad hash function (e.g.)hash(k) = 1
• What if we have a good hash function (that has uniform distribution over a range of

integers)?

• What is the average (expected) length of a chain?

Time Complexity

Chaining

• What is complexity for accessing elements?

• O(length of the chain)
• What is the length of the chain in the worst case?

• O(n)

• This happens for a really bad hash function (e.g.)hash(k) = 1
• What if we have a good hash function (that has uniform distribution over a range of

integers)?

• What is the average (expected) length of a chain?

• : this ratio is called load factor.O (#elements
#buckets)

Time Complexity

Chaining
Time Complexity

Chaining

• In practice, hash tables are very fast

Time Complexity

Chaining

• In practice, hash tables are very fast

• Typically faster than BSTs

Time Complexity

Chaining

• In practice, hash tables are very fast

• Typically faster than BSTs

• Especially we can keep the load factor O(1)

Time Complexity

Chaining

• In practice, hash tables are very fast

• Typically faster than BSTs

• Especially we can keep the load factor O(1)
• Analysis deferred to algorithms

Time Complexity

Hash Table

• Two approaches:

1. Chaining: put a list in each bucket

2. Probing: use spare space in the array

Handling Collision

Probing

• If the bucket is occupied, use the next one.

Probing

• If the bucket is occupied, use the next one.
0

1 41

2

3

4

5 35

6

7 7

8 18

9

Probing

• If the bucket is occupied, use the next one.
0

1 41

2

3

4

5 35

6

7 7

8 18

9

75

Probing

• If the bucket is occupied, use the next one.
0

1 41

2

3

4

5 35

6 75

7 7

8 18

9

Probing

• If the bucket is occupied, use the next one.
0

1 41

2

3

4

5 35

6 75

7 7

8 18

9

• Wrap around when reaching the end of array

Probing

• If the bucket is occupied, use the next one.
0

1 41

2

3

4

5 35

6 75

7 7

8 18

9

• Wrap around when reaching the end of array

• The table must have some extra space, i.e. load factor has to
be 1≤

Probing

• If the bucket is occupied, use the next one.
0

1 41

2

3

4

5 35

6 75

7 7

8 18

9

• Wrap around when reaching the end of array

• The table must have some extra space, i.e. load factor has to
be 1≤

• Many flavors of "next one":

Probing

• If the bucket is occupied, use the next one.
0

1 41

2

3

4

5 35

6 75

7 7

8 18

9

• Wrap around when reaching the end of array

• The table must have some extra space, i.e. load factor has to
be 1≤

• Many flavors of "next one":

• Linear probing: +1 at a time

Probing

• If the bucket is occupied, use the next one.
0

1 41

2

3

4

5 35

6 75

7 7

8 18

9

• Wrap around when reaching the end of array

• The table must have some extra space, i.e. load factor has to
be 1≤

• Many flavors of "next one":

• Linear probing: +1 at a time

• Quadratic probing: * 2 at a time

Probing

• If the bucket is occupied, use the next one.
0

1 41

2

3

4

5 35

6 75

7 7

8 18

9

• Wrap around when reaching the end of array

• The table must have some extra space, i.e. load factor has to
be 1≤

• Many flavors of "next one":

• Linear probing: +1 at a time

• Quadratic probing: * 2 at a time

• ...

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3

4

5

6

7

8

9

struct bucket {

 void *key;

 void *value;

};

• insert("alice", 400)

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3

4

5 ("alice", 400)

6

7

8

9

struct bucket {

 void *key;

 void *value;

};

• insert("bob", 30)

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4

5 ("alice", 400)

6

7

8

9

struct bucket {

 void *key;

 void *value;

};

• insert("carl", 50)

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5 ("alice", 400)

6

7

8

9

struct bucket {

 void *key;

 void *value;

};

• insert("eve", 100)

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5 ("alice", 400)

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• insert("david", 60)

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5 ("alice", 400)

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• find("eve")

• Go to 3 bucket

• Move down until we find "eve" or until we hit
empty bucket

• return 100

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5 ("alice", 400)

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• find("karl")

• Go to 4 bucket

• Move down until we find "karl" or until we hit
empty bucket

• No "karl" in table

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5 ("alice", 400)

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• remove("alice")

• Go to 5

• Move down until we find "alice"

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• remove("alice")

• Go to 5

• Move down until we find "alice"

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• Find("eve")

• Go to 3

• How far do we move down?

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• When we removed "alice" we left a hole

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• When we removed "alice" we left a hole

• When searching for "eve" if we stop at the hole,
we won't find "eve"

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• When we removed "alice" we left a hole

• When searching for "eve" if we stop at the hole,
we won't find "eve"

• But if we don't stop at empty spots, we have to
search through the entire array if a key doesn't
exist

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• A bucket can be in one of three states:

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• A bucket can be in one of three states:

• Occupied (key != NULL)

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• A bucket can be in one of three states:

• Occupied (key != NULL)

• Empty, but was always empty

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 void *key;

 void *value;

};

• A bucket can be in one of three states:

• Occupied (key != NULL)

• Empty, but was always empty

• Empty, but previously occupied

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

• A bucket can be in one of three states:

• Occupied (key != NULL)

• Empty, but was always empty

• Empty, but previously occupied

true when
previously occupied

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5 REMOVED

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find("eve")

• Go to 3

• Move down until we find "eve", or until we hit an
empty, non-removed bucket

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)
struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find("eve")

• Go to 3

• Move down until we find "eve", or until we hit an
empty, non-removed bucket

• This empty but removed bucket is sometimes
called a tombstone

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

Probing

• Let's use strlen as our (bad) hash function

Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

Probing

• Let's use strlen as our (bad) hash function

Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

Probing

• Let's use strlen as our (bad) hash function

Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

Probing

• Let's use strlen as our (bad) hash function

Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

Probing

• Let's use strlen as our (bad) hash function

Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

• Insert:

Probing

• Let's use strlen as our (bad) hash function

Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

• Insert:

• Move down until first empty bucket

Probing

• Let's use strlen as our (bad) hash function

Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

• Insert:

• Move down until first empty bucket

• If tombstone is encountered, we can reuse that bucket

Probing

• Let's use strlen as our (bad) hash function

Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

• Insert:

• Move down until first empty bucket

• If tombstone is encountered, we can reuse that bucket

• But to avoid inserting duplicate keys, we need to
continue searching until an unremoved bucket

Probing

• Let's use strlen as our (bad) hash function

Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {

 bool removed;

 void *key;

 void *value;

};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

• Insert:

• Move down until first empty bucket

• If tombstone is encountered, we can reuse that bucket

• But to avoid inserting duplicate keys, we need to
continue searching until an unremoved bucket

Probing
Linear probing

struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing

• This is why a good hash function spreads out outputs

Linear probing
struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing

• This is why a good hash function spreads out outputs

• If the hash function maps similar inputs to similar outputs, e.g. strlen, we
would get clusters in the hash table.

Linear probing
struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing

• This is why a good hash function spreads out outputs

• If the hash function maps similar inputs to similar outputs, e.g. strlen, we
would get clusters in the hash table.

• Really bad for probing

Linear probing
struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing

• This is why a good hash function spreads out outputs

• If the hash function maps similar inputs to similar outputs, e.g. strlen, we
would get clusters in the hash table.

• Really bad for probing

• Clusters mean we need to go through more buckets

Linear probing
struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing
Time Complexity

struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing

• Chaining: worst , average O(n) O(1)

Time Complexity
struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing

• Chaining: worst , average O(n) O(1)
• What is the worst case complexity when using probing?

Time Complexity
struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing

• Chaining: worst , average O(n) O(1)
• What is the worst case complexity when using probing?

• Insertion: O(n)

Time Complexity
struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing

• Chaining: worst , average O(n) O(1)
• What is the worst case complexity when using probing?

• Insertion: O(n)
• Worst case: all elements are in one cluster, need to go through all to find

unfilled bucket

Time Complexity
struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing

• Chaining: worst , average O(n) O(1)
• What is the worst case complexity when using probing?

• Insertion: O(n)
• Worst case: all elements are in one cluster, need to go through all to find

unfilled bucket

• Get: O(table_size)

Time Complexity
struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing

• Chaining: worst , average O(n) O(1)
• What is the worst case complexity when using probing?

• Insertion: O(n)
• Worst case: all elements are in one cluster, need to go through all to find

unfilled bucket

• Get: O(table_size)
• Worst case: all empty buckets are tombstones

Time Complexity
struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing

• Chaining: worst , average O(n) O(1)
• What is the worst case complexity when using probing?

• Insertion: O(n)
• Worst case: all elements are in one cluster, need to go through all to find

unfilled bucket

• Get: O(table_size)
• Worst case: all empty buckets are tombstones

• On average, the number of probes is at most 1/(1 − load factor)

Time Complexity
struct bucket {

 bool removed;

 void *key;

 void *value;

};

Probing
Time Complexity (Appendix)

Probing

• Let be the event that the th probe is occupied.Ai i

Time Complexity (Appendix)

Probing

• Let be the event that the th probe is occupied.Ai i

• , assuming elements and slotsPr[A1] = n/m n m

Time Complexity (Appendix)

Probing

• Let be the event that the th probe is occupied.Ai i

• , assuming elements and slotsPr[A1] = n/m n m

• , since elements and slots are remaining, assuming uniform hashingPr[A2] = (n − 1)/(m − 1) n − 1 m − 1

Time Complexity (Appendix)

Probing

• Let be the event that the th probe is occupied.Ai i

• , assuming elements and slotsPr[A1] = n/m n m

• , since elements and slots are remaining, assuming uniform hashingPr[A2] = (n − 1)/(m − 1) n − 1 m − 1

• = Pr[A1 ∩ A2 ∩ … ∩ Ai−1] =
n
m

⋅
n − 1
m − 1

⋯
n − i + 2
m − i + 2

≤ (n
m)

i−1

load factori−1

Time Complexity (Appendix)

Probing

• Let be the event that the th probe is occupied.Ai i

• , assuming elements and slotsPr[A1] = n/m n m

• , since elements and slots are remaining, assuming uniform hashingPr[A2] = (n − 1)/(m − 1) n − 1 m − 1

• = Pr[A1 ∩ A2 ∩ … ∩ Ai−1] =
n
m

⋅
n − 1
m − 1

⋯
n − i + 2
m − i + 2

≤ (n
m)

i−1

load factori−1

• E[#probes] =
∞

∑
i=1

Pr[A1 ∩ … ∩ Ai−1]

Time Complexity (Appendix)

Probing

• Let be the event that the th probe is occupied.Ai i

• , assuming elements and slotsPr[A1] = n/m n m

• , since elements and slots are remaining, assuming uniform hashingPr[A2] = (n − 1)/(m − 1) n − 1 m − 1

• = Pr[A1 ∩ A2 ∩ … ∩ Ai−1] =
n
m

⋅
n − 1
m − 1

⋯
n − i + 2
m − i + 2

≤ (n
m)

i−1

load factori−1

• E[#probes] =
∞

∑
i=1

Pr[A1 ∩ … ∩ Ai−1]

• ≤
∞

∑
i=1

load factori−1

Time Complexity (Appendix)

Probing

• Let be the event that the th probe is occupied.Ai i

• , assuming elements and slotsPr[A1] = n/m n m

• , since elements and slots are remaining, assuming uniform hashingPr[A2] = (n − 1)/(m − 1) n − 1 m − 1

• = Pr[A1 ∩ A2 ∩ … ∩ Ai−1] =
n
m

⋅
n − 1
m − 1

⋯
n − i + 2
m − i + 2

≤ (n
m)

i−1

load factori−1

• E[#probes] =
∞

∑
i=1

Pr[A1 ∩ … ∩ Ai−1]

• ≤
∞

∑
i=1

load factori−1

• =
∞

∑
i=0

load factori

Time Complexity (Appendix)

Probing

• Let be the event that the th probe is occupied.Ai i

• , assuming elements and slotsPr[A1] = n/m n m

• , since elements and slots are remaining, assuming uniform hashingPr[A2] = (n − 1)/(m − 1) n − 1 m − 1

• = Pr[A1 ∩ A2 ∩ … ∩ Ai−1] =
n
m

⋅
n − 1
m − 1

⋯
n − i + 2
m − i + 2

≤ (n
m)

i−1

load factori−1

• E[#probes] =
∞

∑
i=1

Pr[A1 ∩ … ∩ Ai−1]

• ≤
∞

∑
i=1

load factori−1

• =
∞

∑
i=0

load factori

• =
1

1 − load factor

Time Complexity (Appendix)

Probing

• Let be the event that the th probe is occupied.Ai i

• , assuming elements and slotsPr[A1] = n/m n m

• , since elements and slots are remaining, assuming uniform hashingPr[A2] = (n − 1)/(m − 1) n − 1 m − 1

• = Pr[A1 ∩ A2 ∩ … ∩ Ai−1] =
n
m

⋅
n − 1
m − 1

⋯
n − i + 2
m − i + 2

≤ (n
m)

i−1

load factori−1

• E[#probes] =
∞

∑
i=1

Pr[A1 ∩ … ∩ Ai−1]

• ≤
∞

∑
i=1

load factori−1

• =
∞

∑
i=0

load factori

• =
1

1 − load factor
• E.g. if the table is half full, the average number of probes is 1 / (1 - 0.5) = 2

Time Complexity (Appendix)

Load Factor
Notes

Load Factor

• Keep load factor makes all operations O(1) O(1)

Notes

Load Factor

• Keep load factor makes all operations O(1) O(1)
• Systems typically keep load factor around 0.7 to 0.75

Notes

Load Factor

• Keep load factor makes all operations O(1) O(1)
• Systems typically keep load factor around 0.7 to 0.75

• This is determined through experimentation

Notes

Load Factor

• Keep load factor makes all operations O(1) O(1)
• Systems typically keep load factor around 0.7 to 0.75

• This is determined through experimentation

• Space vs. time trade-of

Notes

Load Factor

• Keep load factor makes all operations O(1) O(1)
• Systems typically keep load factor around 0.7 to 0.75

• This is determined through experimentation

• Space vs. time trade-of

• What should we do when we hit the maximum load factor?

Notes

Load Factor

• Keep load factor makes all operations O(1) O(1)
• Systems typically keep load factor around 0.7 to 0.75

• This is determined through experimentation

• Space vs. time trade-of

• What should we do when we hit the maximum load factor?

• Increase the # of buckets

Notes

Load Factor

• Keep load factor makes all operations O(1) O(1)
• Systems typically keep load factor around 0.7 to 0.75

• This is determined through experimentation

• Space vs. time trade-of

• What should we do when we hit the maximum load factor?

• Increase the # of buckets

• Can we just realloc? I.e. put the same elements in the same buckets after
expansion?

Notes

Maps
Complexity

lookup insert remove

average worst average worst average worst

ArrayList O(n)	 O(1) O(n) O(1)

Linked List O(n)	 O(1)	 O(1)

ArrayList
(sorted) O(log n) O(n) O(n)

Linked List
(sorted) O(n) O(1) O(1)

BST O(log n) O(n) O(log n) O(n) O(log n) O(n)

Hash Table O(1) O(n) O(1) O(n) O(1) O(n)

Hash Table
Epilogue

Hash Table
Epilogue

• Hash tables are excellent at insertion, removal, and looking up. What
operations are they bad at?

Hash Table
Epilogue

• Hash tables are excellent at insertion, removal, and looking up. What
operations are they bad at?

• Operations that involve comparisons:

Hash Table
Epilogue

• Hash tables are excellent at insertion, removal, and looking up. What
operations are they bad at?

• Operations that involve comparisons:
• find_min and find_max

Hash Table
Epilogue

• Hash tables are excellent at insertion, removal, and looking up. What
operations are they bad at?

• Operations that involve comparisons:
• find_min and find_max
• range look up: give me 10 < key < 20

Hash Table
Epilogue

• Hash tables are excellent at insertion, removal, and looking up. What
operations are they bad at?

• Operations that involve comparisons:
• find_min and find_max
• range look up: give me 10 < key < 20
• Better to use a heap or BST for these

Hash Table
Epilogue

• Hash tables are excellent at insertion, removal, and looking up. What
operations are they bad at?

• Operations that involve comparisons:
• find_min and find_max
• range look up: give me 10 < key < 20
• Better to use a heap or BST for these

• Operations that involve ordering, insert "front" and "back"

Hash Table
Epilogue

• Hash tables are excellent at insertion, removal, and looking up. What
operations are they bad at?

• Operations that involve comparisons:
• find_min and find_max
• range look up: give me 10 < key < 20
• Better to use a heap or BST for these

• Operations that involve ordering, insert "front" and "back"
• Hash tables have no notion of "order" -- in C++, hash tables are called

unordered_map

Hash Table

• Array access is .

• Using arbitrary keys as array indices:

• Hash functions turn any values into an integer. Ideally, this should be uniform.

• Compress function forces integers into [0, table_size).

• Handling Collision:

• Chaining: put a list in each bucket

• Probing: use spare space in the array

• Load factor: the expected number of elements to go through

• #elements / #buckets

• Chaining: load factor has no limit; probing: load factor at most 1

• Adjusting #buckets to keep load factor (0.7 - 0.75) -- time/space trade-of

O(1)

In one slide

Data Structures

Indices Pointers

List Array List Linked List

Map Hash Table BST

• Establishing structures on the heap:

• Indices: contiguous

• random access

• difficult to reorder and reallocate

• Pointer: scattered

• sequential access

• easy to reorder and reallocate

O(1)

