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Hashing

• A hash function maps a key to an integer deterministically:

• I.e. the same key is always turned into the same integer

• Hash functions should run in  timeO(1)
• There are good/bad choices for hash functions

Turning any value into an integer
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Example: 2-letter word dictionary
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hi: used especially as a greeting

...



Hashing

• Map 2-letter words to definitions:

• Key: 2-letter words (string)

• Value: definitions (string)

• What hash function could we use to map keys to ints?
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Hashing

• How many 2-letter words are there?

• 26 * 26 = 676

• How to map words into [0, 676)?

• Idea: map a-z: 0-25

• then, first letter's number * 26 + second letter's number

• hash(αβ) = 26α + β

• hash(go) = 26 ⋅ 6 + 14 = 170

Example: 2-letter word dictionary

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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Example: 2-letter word dictionary
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Supercalifragilisticexpialidocious 34
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Hashing

• 2627 = 160059109085386090080713531498405298176
• Too big for an array!

• Also, English has ~700,000 words; we only need a tiny fraction of these.

• Solution: Compress

Problem
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Hashing

• Generally, hash functions do not care about its output range.

• We use a compression function to put the integer in the reasonable range 
[0,size)

• Common choice: modulus

• a % b calculates the remainder of a divided by b

• a % b always returns an int in the range [0, b)

Compression
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• compress: hash % 10
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• hash: itself


• compress: hash % 10


• insert: 7, 18, 41, 35
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Hashing

• Keys: integer


• Table size: 10


• hash: itself


• compress: hash % 10


• insert: 7, 18, 41, 35


• What if we try to insert 75?

Compression example
0

1 41

2

3

4

5 35

6
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Hashing

• Two different keys sometimes end up in the same slot

• This is called a collision

• Collision has to happen if we have smaller array than the range of hash 
function

• Hash function could produce the same integer for two different keys

• Compression merges different hashes together

• All tables need to handle collision

Collision 
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Hashing

1. Avoid collisions when possible:

1. Pick a good hash function (e.g. strlen is a terrible hash function)

2. Pick a good table size

2. When they arise (inevitably):

1. Have a way to put collisions in a table.

Handling Collision
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Hashing

• Minimize collision:

• What is the worst possible hash function?

• hash(k) = 1

• What is the best possible hash function?

• Every input maps to a distinct output, f(x) = f(y) ⟹ x = y
• This is called perfect hashing. The two-letter hash function is a perfect hash 

function.

Picking a good hash function
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Hashing

• If we want to hash UChicago students:

• Use their birthdays

• Month (Jan, Feb, Mar, ...)?

• Age (0, 1, 2, ..., 100)?

• Day of month (1, 2, 3, ..., 31)?

• Use their first name

• Use their last name

• Use their student ID

Picking a good hash function (Example)
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Hashing

• A good hash function should be:

• fast

• collision with (extremely) low probability

• spreads out the keys

• CS284: Cryptography

Picking a good hash function
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Hash Table

• Nice  complexity because we can index into an array instead of chasing 
pointers

O(1)

• We have a way to turn anything into an integer -- hash function

• We have a way to force any integers into a reasonable range -- compression 
(usually modulus)

• We need to handle collisions:

• Collisions can be the result of the hash function

•  ...                                         of compression

Recap
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Hash Table

• Two approaches:

1. Chaining

2. Probing

Handling Collision
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• Each slot is a list of key-value pairs, called a bucket
0

1

2

3

4

5

6

7
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41

35

7

18

• You can use either list implementation

• ...but there is an obvious choice

• linked list, because of deletion
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Interlude

• The last element of a structure may have an incomplete array type (empty 
bracket)


• sizeof does not include the incomplete field


• Why?

Flexible array member
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Interlude: Flexible Array Member
Allocation
struct table {

        int size;

        int length;

        struct bucket **buckets;

};

struct table {

        int size;

        int length;

        struct bucket *buckets[];

};

int size = 1024;


struct table *t =

  malloc(sizeof(struct table)

         + size * sizeof(struct bucket*));

int size = 1024;


struct table *t =

  malloc(sizeof(struct table));


t->buckets =

  malloc(size * sizeof(struct bucket*));
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Interlude: Flexible Array Member
Accessing t->buckets[3];

table

int


struct bucket **

int


int


.size

.length

.buckets

table

int
int


int


.size

.length

.buckets

t

Two jumps in memory

Only one jump!


 *(t + 8 + i * size)



Interlude: Flexible Array Member

• The last element of a structure may have an incomplete array type (empty 
bracket)


• sizeof does not include the incomplete field


• struct table *ptr = malloc(sizeof(struct table) + extra);


• Slight performance boost
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• Each slot is a list of key-value pairs, called a bucket
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find(table, key):


bucket_idx = hash(key) % table->size


find key in table->buckets[bucket_idx]:



Chaining
Time Complexity
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Chaining

• What is complexity for accessing elements?

• O(length of the chain)
• What is the length of the chain in the worst case?

• O(n)

• This happens for a really bad hash function (e.g. )hash(k) = 1
• What if we have a good hash function (that has uniform distribution over a range of 

integers)?

• What is the average (expected) length of a chain?

•  : this ratio is called load factor.O ( #elements
#buckets )

Time Complexity
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Chaining

• In practice, hash tables are very fast

• Typically faster than BSTs

• Especially we can keep the load factor O(1)
• Analysis deferred to algorithms

Time Complexity



Hash Table

• Two approaches:


1. Chaining: put a list in each bucket


2. Probing: use spare space in the array

Handling Collision
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• The table must have some extra space, i.e. load factor has to 
be  1≤

• Many flavors of "next one":

• Linear probing: +1 at a time

• Quadratic probing: * 2 at a time

• ...
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};

• When we removed "alice" we left a hole

• When searching for "eve" if we stop at the hole, 
we won't find "eve"

• But if we don't stop at empty spots, we have to 
search through the entire array if a key doesn't 
exist
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Probing

• This is why a good hash function spreads out outputs

• If the hash function maps similar inputs to similar outputs, e.g. strlen, we 
would get clusters in the hash table.

• Really bad for probing

• Clusters mean we need to go through more buckets

Linear probing
struct bucket {

        bool removed;

        void *key;

        void *value;

};
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• Chaining: worst , average O(n) O(1)
• What is the worst case complexity when using probing?

• Insertion: O(n)
• Worst case: all elements are in one cluster, need to go through all to find 

unfilled bucket

• Get: O(table_size)
• Worst case: all empty buckets are tombstones
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Probing

• Chaining: worst , average O(n) O(1)
• What is the worst case complexity when using probing?

• Insertion: O(n)
• Worst case: all elements are in one cluster, need to go through all to find 

unfilled bucket

• Get: O(table_size)
• Worst case: all empty buckets are tombstones

• On average, the number of probes is at most 1/(1 − load factor)

Time Complexity
struct bucket {

        bool removed;

        void *key;

        void *value;

};
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• Let  be the event that the th probe is occupied.Ai i

• , assuming  elements and  slotsPr[A1] = n/m n m

• , since  elements and  slots are remaining, assuming uniform hashingPr[A2] = (n − 1)/(m − 1) n − 1 m − 1

•  = Pr[A1 ∩ A2 ∩ … ∩ Ai−1] =
n
m

⋅
n − 1
m − 1

⋯
n − i + 2
m − i + 2

≤ ( n
m )

i−1

load factori−1

• E[#probes] =
∞

∑
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•                    ≤
∞

∑
i=1
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•                    =
∞
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• E.g. if the table is half full, the average number of probes is 1 / (1 - 0.5) = 2

Time Complexity (Appendix)
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Load Factor

• Keep load factor  makes all operations O(1) O(1)
• Systems typically keep load factor around 0.7 to 0.75

• This is determined through experimentation

• Space vs. time trade-of

• What should we do when we hit the maximum load factor?

• Increase the # of buckets

• Can we just realloc? I.e. put the same elements in the same buckets after 
expansion?

Notes



Maps
Complexity

lookup insert remove

average worst average worst average worst

ArrayList O(n)	 O(1) O(n) O(1)

Linked List O(n)	 O(1)	 O(1)

ArrayList 
(sorted) O(log n) O(n) O(n)

Linked List 
(sorted) O(n) O(1) O(1)

BST O(log n) O(n) O(log n) O(n) O(log n) O(n)

Hash Table O(1) O(n) O(1) O(n) O(1) O(n)
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Hash Table
Epilogue

• Hash tables are excellent at insertion, removal, and looking up. What 
operations are they bad at?

• Operations that involve comparisons:
• find_min and find_max
• range look up: give me 10 < key < 20
• Better to use a heap or BST for these

• Operations that involve ordering, insert "front" and "back"
• Hash tables have no notion of "order" -- in C++, hash tables are called 

unordered_map



Hash Table

• Array access is .

• Using arbitrary keys as array indices:

• Hash functions turn any values into an integer. Ideally, this should be uniform.

• Compress function forces integers into [0, table_size).


• Handling Collision:

• Chaining: put a list in each bucket

• Probing: use spare space in the array


• Load factor: the expected number of elements to go through

• #elements / #buckets

• Chaining: load factor has no limit; probing: load factor at most 1

• Adjusting #buckets to keep load factor (0.7 - 0.75) -- time/space trade-of

O(1)

In one slide



Data Structures

Indices Pointers

List Array List Linked List

Map Hash Table BST

• Establishing structures on the heap:

• Indices: contiguous

•  random access

• difficult to reorder and reallocate


• Pointer: scattered

• sequential access

• easy to reorder and reallocate

O(1)


