Sorting Il

Konstantinos Ameranis, July 23

Sorting

So far...

. O(n?): Selection, insertion, bubble sorts

« O(nlogn): Merge, quick sorts

* Final data structure / sorting algorithm: heap

* Note: the "heap” data structure has nothing to do with "heap” memory.

Priority Queue

Priority Queue

* All elements have a priority.

Priority Queue

* All elements have a priority.

* |nsert elements into the data structure in any order; retrieve elements in the
order of their priority (usually highest first).

Priority Queue

* All elements have a priority.

* |nsert elements into the data structure in any order; retrieve elements in the
order of their priority (usually highest first).

 Examples irl:

Priority Queue

* All elements have a priority.

* |nsert elements into the data structure in any order; retrieve elements in the
order of their priority (usually highest first).

 Examples irl:

 Boarding airplanes

Priority Queue

* All elements have a priority.

* |nsert elements into the data structure in any order; retrieve elements in the
order of their priority (usually highest first).

 Examples irl:
 Boarding airplanes

* Hospital triage

Priority Queue

* All elements have a priority.

* |nsert elements into the data structure in any order; retrieve elements in the
order of their priority (usually highest first).

 Examples irl:
 Boarding airplanes
* Hospital triage

* Covid vaccine eligibility

Priority Queue

Priority Queue

* Core operations:

Priority Queue

* Core operations:

* insert (v); --insertan element (assume that priority is in v)

Priority Queue

* Core operations:

* insert (v); --insertan element (assume that priority is in v)

* get top(); --returnthe element with top priority

Priority Queue

* Core operations:

e insert (v); --insertan element (assume that priority is in v)
* get top(); --returnthe element with top priority

* remove top () ; -- remove the element with top priority

Priority Queue

* Core operations:

e insert (v); --insertan element (assume that priority is in v)
* get top(); --returnthe element with top priority
* remove top () ; -- remove the element with top priority

* Others: size () is empty () update priority () ...ignored for now

Priority Queue

Implementations

insert

get top

remove top

Priority Queue

Implementations

insert

get top

remove top

ArraylList

Priority Queue

Implementations

insert

get top

remove top

ArraylList

O(1)

Priority Queue

Implementations

insert

remove top

ArraylList

O(1)

Priority Queue

Implementations

insert

remove top

ArraylList

O(1)

O(n)

Priority Queue

Implementations

insert

remove top

ArraylList

O(1)

O(n)

Sorted ArrayList

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArrayList O(n)

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArrayList O(n) O(1)

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArrayList O(n) O(1) O(1)

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArrayList O(n) O(1) O(1)

Sorted Linked List

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArrayList O(n) O(1) O(1)

Sorted Linked List O(n)

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArrayList O(n) O(1) O(1)

Sorted Linked List O(n)

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArrayList O(n) O(1) O(1)

Sorted Linked List O(n)

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArrayList O(n) O(1) O(1)
Sorted Linked List O(n) O(1) O(1)

General BST

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArrayList O(n) O(1) O(1)
Sorted Linked List O(n) O(1) O(1)

General BST O(n)

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArraylList O(n) O(1) O(1)
Sorted Linked List O(n) 0(1) 0(1)
General BST O(n) O(n)

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArraylList O(n) O(1) O(1)
Sorted Linked List O(n) 0(1) 0(1)
General BST O(n) O(n) O(n)

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArraylList O(n) O(1) O(1)
Sorted Linked List O(n) 0(1) 0(1)
General BST O(n) O(n) O(n)
Balanced BST

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArrayList O(n) 0(1) 0(1)
Sorted Linked List O(n) O(1) O(1)
General BST O(n) O(n) O(n)
Balanced BST O(log n)

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArrayList O(n) 0(1) 0(1)
Sorted Linked List O(n) O(1) O(1)
General BST O(n) O(n) O(n)
Balanced BST O(log n) O(log n)

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArrayList O(n) 0(1) 0(1)
Sorted Linked List O(n) O(1) O(1)
General BST O(n) O(n) O(n)
Balanced BST O(log n) O(log n) O(log n)

Heap

* A heap is an efficient implementation of priority queues.

A heap is a binary tree satisfying the following two constraints:

* Shape property

* Value property

Heap

Shape property

Heap

Shape property

A heap Is a complete binary tree.

Heap

Shape property

A heap Is a complete binary tree.

* A binary tree is complete it and only If:

Heap

Shape property

A heap Is a complete binary tree.

* A binary tree is complete it and only If:

 Each level is full, except possibly the last level;

Heap

Shape property

A heap Is a complete binary tree.

* A binary tree is complete it and only If:

 Each level is full, except possibly the last level;

* The last level is filled from left to right

Heap

Shape property

Complete Incomplete

Heap

Value Property

Heap

Value Property

* |n a heap:

Heap

Value Property

* |n a heap:

* Parents have higher priority than their children: (two flavors)

Heap

Value Property

* |n a heap:
* Parents have higher priority than their children: (two flavors)

 Min-heap: parent value Is less than any child value.

Heap

Value Property

* |n a heap:
* Parents have higher priority than their children: (two flavors)
 Min-heap: parent value Is less than any child value.

 Max-heap: parent value is greater than any child value. (We use this flavor
in this class)

Heap

Value Property

* |n a heap:
* Parents have higher priority than their children: (two flavors)
 Min-heap: parent value Is less than any child value.

 Max-heap: parent value is greater than any child value. (We use this flavor
in this class)

e Order between children does not matter.

Heap

Value Property

* |n a heap:
* Parents have higher priority than their children: (two flavors)
 Min-heap: parent value Is less than any child value.

 Max-heap: parent value is greater than any child value. (We use this flavor
in this class)

e Order between children does not matter.

e Thisis not a BST.

Heap

Heap

(o) O
@ @

Heap

(o) O
@ @

e NotaBST because:

Heap

(o) O
@ @

e NotaBST because:

 Parents Is greater than both children.

Heap

(=
OO @

 Not a BST because:
 Parents Is greater than both children.

 No guaranteed ordering between children.

Heap

Heap e

 Being complete means every 6-element heap has this shape.

Heap e

 Being complete means every 6-element heap has this shape.

e |f a 7th element is added, the new trees will always have the same shape.

Heap

What is the best way to store this?

Heap

What is the best way to store this?

 Could use nodes and pointers...

Heap

What is the best way to store this?

 Could use nodes and pointers...
 Or, we can use a data structure that provides ° 0

constant-time access to elements:

Heap

What is the best way to store this?

 Could use nodes and pointers...
 Or, we can use a data structure that provides ° 0

constant-time access to elements:

e array

Heap

What is the best way to store this?

 Being complete means we can store the
elements row by row.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

43

22

11

10

12

Heap

What is the best way to store this?

* Root at index O

« For an element at position i:
o left child: 21 + 1
e right child: 21 + 2
 parent: [(i—1)/2]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

43

22

11

10

12

Heap

What is the best way to store this?

« For an element at position :

1Nt
1n:

1in

e left child: 21 + 1
e right child: 21 + 2
e parent: |[(i—1)/2]

int self
| left child
right child
€ parent

heap|[1];

heap[(1 -

heap|

heap|

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

43

22

11

10

12

Heap

What is the best way to store this?

 Possible exam guestions:
e (Given tree, write array
e (Given array, draw tree

* |dentify parent, left, right children

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

43

22

11

10

12

Heap

Operations

* get top()
 OJ(1) operation: h[0]

 How about insertion and removal?

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

43

22

11

10

12

Heap

Operations

O
e |nsertion and removal scheme:

1. Restore shape property first, ignoring
value property

2. Restore value property without changing

the shape 3

[01 | [1] [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] | [10]

43 | 22 | 11 | 10 | 12

Heap

Operations

e 1nsert (50)

* Where should we put the element to maintain

the shape property?

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

43

22

11

10

12

Heap

Operations

* 1nsert (50)

* Where should we put the element to maintain
the shape property?

1. Insert item at element h [heap size] (very

likely destroying the heap property)
2. Increment heap size

3. Bubble up until you get to root:

(<)

(=)’
D &)

()

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

o Swap with its parent if in incorrect
order

43

22

11

10

12

50

Heap

Operations

* 1nsert (50)

* Where should we put the element to maintain
the shape property?

1. Insert item at element h[heap size + 1]
(very likely destroying the heap property)

2. Increment heap size

3. Bubble up until you get to root:

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

o Swap with its parent if in incorrect
order

43

22

50

10

12

11

Heap

Operations

* 1nsert (50)

* Where should we put the element to maintain
the shape property?

1. Insert item at element h[heap size + 1]
(very likely destroying the heap property)

2. Increment heap size

3. Bubble up until you get to root:

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

o Swap with its parent if in incorrect
order

50

22

43

10

12

11

Heap

Operations

e 1nsert (50)

» Worst case complexity: O(log n)

1. Insert item at element h [heap size] (very

likely destroying the heap property)
2. Increment heap size
3. Bubble up until you get to root:

e Swap with its parent if in incorrect
order

OBNO

1o]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

50

22

43

10

12

11

Heap

Operations

e remove top ()

1.

Remove root (save for later return)

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

50

22

43

10

12

11

Heap

Operations

e remove top ()

1.

Remove root (save for later return)

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

22

43

10

12

11

Heap

Operations

e remove top ()

1. Remove root (save for later return)

2. Maintain shape: replace root with last
element in the array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

22

43

10

12

11

Heap

Operations

e remove top ()

1.
2.

Remove root (save for later return)

Maintain shape: replace root with last
element in the array
(Decrement heap size)

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

11

22

43

10

12

Heap

Operations

e remove top ()

1.
2.

Remove root (save for later return)

Maintain shape: replace root with last
element in the array
(Decrement heap size)

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

11

22

43

10

12

Heap

Operations

e remove top ()

1.
2.

Remove root (save for later return)

Maintain shape: replace root with last

element in the array
(Decrement heap size)

Sink down:

1.
2.

If >= both of its children, if correct stop

If not, swapped with the larger

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

11

22

43

10

12

Heap

Operations

e remove top ()

1.
2.

Remove root (save for later return)

Maintain shape: replace root with last

element in the array
(Decrement heap size)

Sink down:

1.
2.

If >= both of its children, if correct stop

If not, swapped with the larger

OBNO

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

43

22

11

10

12

Heap

Bubble Up
volid bubble up(int *arr, int 1)
{
while (1 > 0) {
int parent = (1 - 1) / 2;
if (arr[parent] < arr[i])
swap (arr, parent, 1);
1 = parent;
} else {
break;

}

[0]

[1]

[3]

[4]

[7]

[8]

[9]

[10]

43

22

10

12

23

Heap

Bubble Up
volid bubble up(int *arr, int 1)
{
while (1 > 0) {
int parent = (1 - 1) / 2;
if (arr[parent] < arr[i])
swap (arr, parent, 1);
1 = parent;
} else {
break;

}

[0]

[1]

[3]

[4]

[7]

[8]

[9]

[10]

43

22

10

12

23

Heap

Bubble Up
volid bubble up(int *arr, int 1)
{
while (1 > 0) {
int parent = (1 - 1) / 2;
if (arr[parent] < arr[i])
swap (arr, parent, 1);
1 = parent;
} else {
break;

}

[0]

[1]

[3]

[4]

[7]

[8]

[9]

[10]

43

22

10

12

23

Heap

Bubble Up
volid bubble up(int *arr, int 1)
{
while (1 > 0) {
int parent = (1 - 1) / 2;
if (arr[parent] < arr[i])
swap (arr, parent, 1);
1 = parent;
} else {
break;

}

[0]

[1]

[3]

[4]

[7]

[8]

[9]

[10]

43

22

23

12

10

Heap

Bubble Up
volid bubble up(int *arr, int 1)
{
while (1 > 0) {
int parent = (1 - 1) / 2;
if (arr[parent] < arr[i])
swap (arr, parent, 1);
1 = parent;
} else {
break;

}

{

[0]

[3]

[4]

[8]

[9]

[10]

43

23

12

10

Heap

Bubble Up
volid bubble up(int *arr, int 1)
{
while (1 > 0) {
int parent = (1 - 1) / 2;
if (arr[parent] < arr[i])
swap (arr, parent, 1);
1 = parent;
} else {
break;

}

{

().

[0]

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

43

22

11

23

12

10

Heap

Bubble Up
volid bubble up(int *arr, int 1)
{
while (1 > 0) {
int parent = (1 - 1) / 2;
if (arr[parent] < arr[i])
swap (arr, parent, 1);
1 = parent;
} else {
break;

}

{

().

[0]

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

43

22

11

23

12

10

Heap

Bubble Up
volid bubble up(int *arr, int 1)
{
while (1 > 0) {
int parent = (1 - 1) / 2;
if (arr[parent] < arr[i])
swap (arr, parent, 1);
1 = parent;
} else {
break;

}

{

().

[0]

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

43

23

11

22

12

10

Heap

Bubble Up
volid bubble up(int *arr, int 1)
{
while (1 > 0) {
int parent = (1 - 1) / 2;
if (arr[parent] < arr[i])
swap (arr, parent, 1);
1 = parent;
} else {
break;

}

[0]

[1]

[3]

[4]

[7]

[8]

[9]

[10]

43

23

22

12

10

Heap

Bubble Up
volid bubble up(int *arr, int 1)
{
while (1 > 0) {
int parent = (1 - 1) / 2;
if (arr[parent] < arr[i])
swap (arr, parent, 1);
1 = parent;
} else {
break;

}

[0]

[1]

[3]

[4]

[7]

[8]

[9]

[10]

43

23

22

12

10

Heap

Bubble Up
volid bubble up(int *arr, int 1)
{
while (1 > 0) {
int parent = (1 - 1) / 2;
if (arr[parent] < arr[i])
swap (arr, parent, 1);
1 = parent;
} else {
break;

}

[0]

[1]

[3]

[4]

[7]

[8]

[9]

[10]

43

23

22

12

10

Heap

Bubble Up
volid bubble up(int *arr, int 1)
{
while (1 > 0) {
int parent = (1 - 1) / 2;
if (arr[parent] < arr[i])
swap (arr, parent, 1);
1 = parent;
} else {
break;

}

[0]

[1]

[3]

[4]

[7]

[8]

[9]

[10]

43

23

22

12

10

Heap

Bubble Up

vold push heap (1nt *arr,

{

arr|.

en |

bubb._

e up(arr,

elem;

int len,

len) ;

int elem)

[0]

[1]

[3]

[4]

[7]

[8]

[9]

[10]

43

23

22

12

10

Heap

Bubble Up

vold push heap (1nt *arr,

{

arr|.

en |

bubb._

e up(arr,

elem;

len) ;

int len,

push heap (arr,

4

) ;

int elem)

[0]

[1]

[3]

[4]

[7]

[8]

[9]

[10]

43

23

22

12

10

Heap

Bubble Up

vold push heap(int *arr, int len, 1Int elem)
{
arr|[len] = elem;
bubble up(arr, len);

push heap (arr, ,) ;

[10]

Heap

Bubble Up

vold push heap (1nt *arr,

{

arr|.

en |

bubb._

e up(arr,

elem;

len) ;

int len,

push heap (arr,

4

) ;

int elem)

[0]

[3]

[4]

[7]

[8]

[9]

[10]

43

40

12

10

22

Heap

Bubble Up

vold push heap (1nt *arr,

{

arr|.

en |

bubb._

e up(arr,

elem;

len) ;

int len,

push heap (arr,

4

) ;

int elem)

[9]

[10]

10

22

Heap

Bubble Down

vold bubble down(int *arr, int len, int 1)

{
for (;;) |

int largest = 1;
int left = * 1+ 1,
int right = * 1+ 23

1f (left < len && arr[left] > arr[largest]) {
largest = left;

J

i1f (right < len && arr[right] > arr[largest])
largest = right;
}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;
} else {
break;
\ [0 | [1] | [2] | [3] | [4] | [S] | [6] | [7] | [8] | [9] |[10]

Heap

Bubble Down

{

for

vold bubble down (int *arr, int len,

(77) A

int largest = 1;

int left = * 1 4+ 1;

int right = * 1+ 23

1f (left < len && arr[left]
largest = left;

}

if (right < len && arr
largest = right;

}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;

} else {
break;

J

int 1)

> arr|[largest])

{

[right] > arr[largest]) { 3
‘II:')7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

22

40

11

23

12

10

Heap

Bubble Down

{

for

int 1)

> arr|[largest])

vold bubble down (int *arr, int len,

(77) |

int largest = 1;

int left = * 1+ 13

int right = * 1+ 23

1f (left < len && arr[left]
largest = left;

}

i1f (right < len && arrl[right]
largest = right;

}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;

} else {
break;

J

{

> arr[largest]) { e
‘II:')7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

22

40

11

23

12

10

Heap

Bubble Down

{

for

int 1)

> arr|[largest])

vold bubble down (int *arr, int len,

(77) |

int largest = 1;

int left = * 1+ 13

int right = * 1+ 23

1f (left < len && arr[left]
largest = left;

}

i1f (right < len && arrl[right]
largest = right;

}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;

} else {
break;

J

{

> arr[largest]) { e
‘II:')7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

22

40

11

23

12

10

Heap

Bubble Down

{

for

int 1)

> arr|[largest])

vold bubble down (int *arr, int len,

(77) |

int largest = 1;

int left = * 1+ 13

int right = * 1+ 23

1f (left < len && arr[left]
largest = left;

}

i1f (right < len && arrl[right]
largest = right;

}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;

} else {
break;

J

{

> arr[largest]) { e
‘II:')7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

40

22

11

23

12

10

Heap

Bubble Down

{

for

int 1)

> arr|[largest])

vold bubble down (int *arr, int len,

(77) |

int largest = 1;

int left = * 1+ 13

int right = * 1+ 23

1f (left < len && arr[left]
largest = left;

}

i1f (right < len && arrl[right]
largest = right;

}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;

} else {
break;

J

{

> arr[largest]) { e
‘II:')7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

40

22

11

23

12

10

Heap

Bubble Down

vold bubble down(int *arr, int len, int 1)

{
for (;;) |

int largest = 1;
int left = * 1+ 1,
int right = * 1+ 23

1f (left < len && arr[left] > arr[largest]) {
largest = left;

J

i1f (right < len && arr[right] > arr[largest])
largest = right;
}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;
} else {
break;
\ [0 | [1] | [2] | [3] | [4] | [S] | [6] | [7] | [8] | [9] |[10]

Heap

Bubble Down

{

for

int 1)

> arr|[largest])

vold bubble down (int *arr, int len,

(77) |

int largest = 1;

int left = * 1+ 13

int right = * 1+ 23

1f (left < len && arr[left]
largest = left;

}

i1f (right < len && arrl[right]
largest = right;

}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;

} else {
break;

J

{

> arr[largest]) { a
‘II:')7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

40

22

11

23

12

10

Heap

Bubble Down

{

for

int 1)

> arr|[largest])

vold bubble down (int *arr, int len,

(77) |

int largest = 1;

int left = * 1+ 13

int right = * 1+ 23

1f (left < len && arr[left]
largest = left;

}

i1f (right < len && arrl[right]
largest = right;

}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;

} else {
break;

J

{

> arr[largest]) { a
‘II:')7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

40

22

11

23

12

10

Heap

Bubble Down

vold bubble down(int *arr, int len, int 1)

{
for (;;) |

int largest = 1;
int left = * 1+ 1,
int right = * 1+ 23

1f (left < len && arr[left] > arr[largest]) {
largest = left;

J

i1f (right < len && arr[right] > arr[largest])
largest = right;
}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;
} else {
break;
\ [0 | [1] | [2] | [3] | [4] | [S] | [6] | [7] | [8] | [9] |[10]

Heap

Bubble Down

{

for

int 1)

> arr|[largest])

vold bubble down (int *arr, int len,

(77) |

int largest = 1;

int left = * 1+ 13

int right = * 1+ 23

1f (left < len && arr[left]
largest = left;

}

i1f (right < len && arrl[right]
largest = right;

}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;

} else {
break;

J

{

> arr[largest]) { @
‘II:')7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

40

23

11

22

12

10

Heap

Bubble Down

{

for

vold bubble down (int *arr, int len,

(77) A

int largest = 1;

int left = * 1 4+ 1;

int right = * 1+ 23

1f (left < len && arr[left]
largest = left;

}

if (right < len && arr
largest = right;

}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;

} else {
break;

J

int 1)

> arr|[largest])

{

[right] > arr[largest]) { 3
‘II:')7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

40

23

11

22

12

10

Heap

Bubble Down

{

for

int 1)

> arr|[largest])

vold bubble down (int *arr, int len,

(77) |

int largest = 1;

int left = * 1+ 13

int right = * 1+ 23

1f (left < len && arr[left]
largest = left;

}

i1f (right < len && arrl[right]
largest = right;

}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;

} else {
break;

J

{

> arr[largest]) { @
‘II:')7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

40

23

11

22

12

10

Heap

Bubble Down

{

for

int 1)

> arr|[largest])

vold bubble down (int *arr, int len,

(77) |

int largest = 1;

int left = * 1+ 13

int right = * 1+ 23

1f (left < len && arr[left]
largest = left;

}

i1f (right < len && arrl[right]
largest = right;

}

i1f (largest !'= 1) {
swap (arr, 1, largest);
1 = largest;

} else {
break;

J

{

> arr[largest]) { e
‘II:')7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

40

23

11

22

12

10

Heap

Bubble Down

1nt pop heap(int *arr, int len)

{

int top = arxr[0];
arr[0] = arr[len - 1];
bubble down(arr, len - 1, 0);

[01 | [1]1 | [2] | [3] | [4] | [S] | [6] | [7] | [8] | [9] |[10]

40 23 | 11 | 22 | 12 | 9 3 | 10

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArraylList O(n) O(1) O(1)
Sorted Linked List O(n) O(1) O(1)
General BST O(n) O(n) O(n)
Balanced BST O(log n) O(log n) O(log n)

Heap

Priority Queue

Implementations
insert get top remove top

ArrayList O(1) O(n) O(n)

Sorted ArraylList O(n) O(1) O(1)

Sorted Linked List O(n) O(1) O(1)

General BST O(n) O(n) O(n)
Balanced BST O(log n) O(log n) O(log n)

Heap O(log n)

Priority Queue

Implementations
insert get top remove top

ArrayList O(1) O(n) O(n)

Sorted ArraylList O(n) O(1) O(1)

Sorted Linked List O(n) O(1) O(1)

General BST O(n) O(n) O(n)
Balanced BST O(log n) O(log n) O(log n)

Heap O(log n) O(1)

Priority Queue

Implementations
insert get top remove top
ArrayList O(1) O(n) O(n)
Sorted ArraylList O(n) O(1) O(1)
Sorted Linked List O(n) O(1) O(1)
General BST O(n) O(n) O(n)
Balanced BST O(log n) O(log n) O(log n)
Heap O(log n) O(1) O(log n)

Heap

Heap Sort

Heap

Heap Sort

 What is the best way to build a heap from scratch?

12,22,11, 8,10, 43, 13, 9, 14

Heap

Heap Sort

 What is the best way to build a heap from scratch?
12, 22,11, 8, 10,43, 13, 9, 14

e We could insert each In turn.

Heap

Heap Sort

 What is the best way to build a heap from scratch?
12, 22,11, 8, 10,43, 13, 9, 14

e We could insert each In turn.

» Insertion takes O(log n), doing it n times -- total complexity O(n log n).

Heap

Heap Sort

 What is the best way to build a heap from scratch?
12, 22,11, 8, 10,43, 13, 9, 14

e We could insert each In turn.

» Insertion takes O(log n), doing it n times -- total complexity O(n log n).

e |t's not bad, but we can do better!

Heap

Heapify

Heap

Heapify

* (Given an unsorted array:

12,22,11, 8,10, 43, 13, 9, 14

Heap

Heapify

* (Given an unsorted array:
12,22,11,8, 10,43, 13,9, 14

 What if we just call this a heap?

Heap

Heapify

* (Given an unsorted array:
12,22,11,8, 10,43, 13,9, 14

 What if we just call this a heap?

Heap

Heapify

* (Given an unsorted array:
12,22,11,8, 10,43, 13, 9, 14
 What if we just call this a heap?

 Shape property is satisfied

Heap

Heapify

* (Given an unsorted array:
12,22,11,8, 10,43, 13, 9, 14
 What if we just call this a heap?

 Shape property is satisfied

» Value property is not, but...

Heap

Heapify

* (Given an unsorted array:
12,22,11,8, 10,43, 13, 9, 14
 What if we just call this a heap?

 Shape property is satisfied

» Value property is not, but...

* All leaves satisfy the value
property (they have no children)

Heap

Heapify

* (Given an unsorted array:
12,22,11,8, 10,43, 13, 9, 14
 What if we just call this a heap?

 Shape property is satisfied

» Value property is not, but...

* All leaves satisfy the value
property (they have no children)

Heap

Heapify

* Given an unsorted array:
12,22,11,8, 10,43, 13, 9, 14

 What if we just call this a heap?

Heap

Heapify

* Given an unsorted array:
12,22,11, 8,10, 43, 13,9, 14
 What if we just call this a heap?

* Insight. To make non-leaves satisfy the
value property, perform bubble-down
on every non-leaf node, from bottom

up.

Heap

Heapify

* Given an unsorted array:
12,22,11, 8,10, 43, 13,9, 14
 What if we just call this a heap?

* Insight. To make non-leaves satisfy the
value property, perform bubble-down
on every non-leaf node, from bottom

up.

 Bubble down assumes that both
subtrees are valid heaps.

Heap

Heapify

Heap

Heapify

e Question: What is the array index of
the last (lowest, rightmost) non-leaf
node?

Heap

Heapify

e Question: What is the array index of
the last (lowest, rightmost) non-leaf
node?

 Answer: heap size / 2 - 1

Heap

Heapify

e Question: What is the array index of
the last (lowest, rightmost) non-leaf
node?

 Answer: heap size / 2 - 1

o Lastleafis (heap size - 1)

Heap

Heapify

e Question: What is the array index of
the last (lowest, rightmost) non-leaf
node?

 Answer: heap size / 2 - 1
o Lastleafis (heap size - 1)

e Parent of last leaf Is
(heap size - 1 - 1) / 2

Heap

Heapify

* (Given an unsorted array:
12,22,11,8, 10,43, 13,9, 14
1. Call this a heap.

2. Starting at index heap size / 2
- 1 and moving backwards:
perform bubble down on every
non-leaf node

Heap

Heapify

e (Given an unsorted array:

12, 22,11, 8, 10,43, 13, 9, 14 1 2

1. Call this a heap.

2. Starting at index heap size / 2 3 : > °
- 1 and moving backwards: @ @ °
perform bubble down on every
non-leaf node 7 °

Heap

Heapify

* (Given an unsorted array:
12,22,11,8, 10,43, 13,9, 14
1. Call this a heap.

2. Starting at index heap size / 2
- 1 and moving backwards:
perform bubble down on every
non-leaf node

Heap

Heapify

* (Given an unsorted array:
12,22,11,8, 10,43, 13,9, 14
1. Call this a heap.

2. Starting at index heap size / 2
- 1 and moving backwards:
perform bubble down on every
non-leaf node

Heap

Heapify

* (Given an unsorted array:
12,22,11,8, 10,43, 13,9, 14
1. Call this a heap.

2. Starting at index heap size / 2
- 1 and moving backwards:
perform bubble down on every
non-leaf node

Heap

Heapify

* (Given an unsorted array:

12,22,11, 8,10, 43, 13, 9, 14

1. Call this a heap.

2. Starting at index heap size / 2 > : > °
- 1 and moving backwards: ° @ @ °
perform bubble down on every
non-leaf node ° 7 °

Heap

Heapify

* (Given an unsorted array:

12,22,11, 8,10, 43, 13, 9, 14

1. Call this a heap.

2. Starting at index heap size / 2 > : > °
- 1 and moving backwards: ° @ @ °
perform bubble down on every
non-leaf node ° 7 °

Heap

Heapify

()
* (Given an unsorted array:

12,22,11, 8,10, 43, 13, 9, 14

1. Call this a heap.

2. Starting at index heap size / 2 > : > ')
- 1 and moving backwards: ° @ @ @
perform bubble down on every

non-leaf node ° 7 °

Heap

Heapify

* (Given an unsorted array:

12,22,11, 8,10, 43, 13, 9, 14

1. Call this a heap.

2. Starting at index heap size / 2 > : > °
- 1 and moving backwards: ° @ @ G
perform bubble down on every
non-leaf node ° 7 °

Heap

Heapify
0
vold heapify(int *arr, 1int len) @
{
for (int 1 = len / 2 = 1; 1 >= 0; 1i--) {

bubble down (arr, len, 1);

J

)RB OJONO)
ONO

Heap

Heapify Complexity?

« CMSC 27200.

* |nformal analysis:

’RB OJONO)
ONO

Heap

Heapify Complexity?

« CMSC 27200.
* |Informal analysis:

e Define level to be the maximum
distance from the leaves.

e red: level O

e green: level 1

e blue: level 2

Heap

Heapify Complexity?

« CMSC 27200.
* |Informal analysis:

e Define level to be the maximum distance
from the leaves.

» Ifnis heap size, there are at most...
. [n/21] level 0 nodes (7 /2 = 4)
. [n/22] level 1 nodes (7 / 4 = 2)

. [n/23] level 2 nodes (7// 8 ~ 1)

Heap

Heapify Complexity?

« CMSC 27200.

* |Informal analysis:

e Define level to be the maximum
distance from the leaves.

3 4 5 6
o [fnisheap size, there are at most... @ @ @

e 1n/2* 1 nodes for level [

Heap

Heapify Complexity?

0
« CMSC 27200. @

* |Informal analysis:

e Define level to be the maximum distance
from the leaves.

3 4 5 °
o [fnisheap size, there are at most... @ @

e 1n/2% 1 nodes for level |

e For nodes with level [, there can be at
most [swaps bubbling down.

Heap

Heapify Complexity?

« CMSC 27200.

* |Informal analysis:

log n
_ Total works: Z . [

Heap

Heapify Complexity?

« CMSC 27200.

* |nformal analysis:

TtI klognn [<n=0
oaworsz 1 n= 0(mn)

3 4 5 6
= OIONO

Heap

Heapify Complexity?

« CMSC 27200.

* |nformal analysis:

log n

n
) Total works: Z ﬁ .

[=0
 Magic!

Heap

Heap Sort

 What is the best way to build a heap from scratch?
12, 22,11, 8, 10,43, 13, 9, 14
» Heapify -- O(n)

 remove top and put it to the end

Heap

Heap Sort

int remove top(int *arr, 1nt len) ; for (int 1 = len - 1; 1 >= 1; 1--) {
{ § swap (arr, 0, 1i);

int top = arr[0]; § bubble down (arr, i, 0);

arr[0] = arr[len - 17; § }

bubble down (arr, len - 1, 0);

return top;

Heap

Heap Sort

 What is the best way to build a heap from scratch?
12, 22,11, 8, 10, 43, 13, 9, 14

» Heapify -- O(n)

 For each n:

» remove top and put it to the end O(log n)

» Complexity: O(nlogn)

Heap

Heap Sort Code

vold heap sort(int *arr,

{

for

J

for

(int 1 = len /
bubble down (arr,

(int 1 = len -

swap (arr, 0, 1);

bubble down (arr,

°
4

int len)

len,

o
4

1 >=
1);

1 >=

1,

) ;

o
4

°
’

i--)

i--)

{

{

Heapify

Extract top and put at the end

Heap

Heap Sort

 What is the best way to build a heap from scratch?
12,22,11, 8,10, 43, 13, 9, 14

e Heapify -- O(n)

* For each n:
e remove top and put it to the end O(log n)

» Complexity: O(nlogn)

o Space complexity: in-place

Sorting

. O(n?): Selection, Insertion, Bubble
« O(nlogn): Tree, Merge, Quick

» O(nlogn) without extra space (not even a stack): Heap sort

 Heap sort is "selection sort with the right data structure.”

Sorting
Links

* Visualization of heaps: https://www.cs.usfca.edu/~galles/visualization/
Heap.htm|

e Dances:

 Merge sort: https://youtu.be/XagR3G NVoo

* Quick sort: https://youtu.be/ywWBy6J59z8

e Sorting algorithms: https://youtu.be/KPRAOW1KECg

https://www.cs.usfca.edu/~galles/visualization/Heap.html
https://www.cs.usfca.edu/~galles/visualization/Heap.html
https://www.cs.usfca.edu/~galles/visualization/Heap.html
https://www.cs.usfca.edu/~galles/visualization/Heap.html
https://youtu.be/XaqR3G_NVoo
https://youtu.be/ywWBy6J5gz8
https://youtu.be/kPRA0W1kECg

std::stable sort (gcc) - 8950 comparisons, 20268 array accesses, 1.00 ms delay http://panthema.net/2013/sound-of-sorting

https://www.youtube.com/watch?v=kPRA0W1kECg

std::stable sort (gcc) - 8950 comparisons, 20268 array accesses, 1.00 ms delay http://panthema.net/2013/sound-of-sorting

https://www.youtube.com/watch?v=kPRA0W1kECg

Recap

Sorting

Recap

. Three O(n?) algorithms: Selection, Insertion, Bubble

Sorting

Recap

. Three O(n?) algorithms: Selection, Insertion, Bubble

» Four O(nlog n) algorithms: Tree, Merge, Quick, Heap

Sorting

Recap

. Three O(n?) algorithms: Selection, Insertion, Bubble

» Four O(nlog n) algorithms: Tree, Merge, Quick, Heap

* [here are a lot more sorting algorithms...

Sorting

Recap

. Three O(n?) algorithms: Sele:
« Four O(nlogn) algorithms: T

 There are a lot more sorting a

Name

Quicksort

Merge sort

Introsort
Heapsort

Insertion sort

Block sort

Timsort

Selection sort

Cubesort

Shellsort
Bubble sort

Exchange sort
Tree sort

Cycle sort

Library sort

Patience sorting

Smoothsort

Strand sort
Tournament sort

Cocktail shaker

A
v

In-place merge sort

Best ¢

nlogn

nlogn

nlogn

nlogn

nlogn

Average ¢

nlogn

nlogn

nlogn

nlogn

nlogn

nlogn

nlogn

nlogn

nlogn

nlogn

Worst <

n2

nlogn

nlog® n

nlogn

nlogn

nlogn

nlogn

nlogn

(balanced)

n2

nlogn

nlogn

nlogn

Jubble

<, Heap

BogOSOI't NMp 27 languages Vv

Article Talk Read Edit View history Tools Vv

From Wikipedia, the free encyclopedia

In computer science, bogosort!'!?] (also known as permutation sort and stupid

. . . _ _ Bogosort
sort'®)) is a sorting algorithm based on the generate and test paradigm. The function
successively generates permutations of its input until it finds one that is sorted. Itis | €12%S il
Data Array

not considered useful for sorting, but may be used for educational purposes, to

. . . . structure
contrast it with more efficient algorithms.

Worst-case Unbounded (randomized

Two versions of this algorithm exist: a deterministic version that enumerates all performance version), O(n x n!)
(deterministic version)

permutations until it hits a sorted one,?Il*! and a randomized version that randomly
Best-case Q(n)!"

permutes its input. An analogy for the working of the latter version is to sort a deck of

_ _ L performance
cards by throwing the deck into the air, picking the cards up at random, and 1
, _ | o Average O(n x n!)M
repeating the process until the deck is sorted. In a worst-case scenario with this
_ _ _ performance
version, the random source is of low quality and happens to make the sorted Worst-case O(1)
permutation unboundedly unlikely to occur. The algorithm's name is a portmanteau space
of the words bogus and sort.[°] complexity

Description of the algorithm et

Pseudocode [edit]

The following is a description of the randomized algorithm in pseudocode:

while not sorted(deck):
shuffle(deck)

BogOSOI't Mp 27 languages Vv

Article Talk Read Edit View history Tools W

From Wikipedia, the free encyclopedia

In computer science, bogosort!'!?] (also known as permutation sort and stupid

. . . _ _ Bogosort
sort!®)) is a sorting algorithm based on the generate and test paradigm. The function
successively generates permutations of its input until it finds one that is sorted. Itis | €128 S0KiNg
Data Array

not considered useful for sorting, but may be used for educational purposes, to

o - : structure
contrast it with more efficient algorithms.

Worst-case Unbounded (randomized

Two versions of this algorithm exist: a deterministic version that enumerates all performance version), O(n x n!)
(deterministic version)

permutations until it hits a sorted one,?Il*! and a randomized version that randomly
Best-case Q(n)!"

permutes its input. An analogy for the working of the latter version is to sort a deck of

_ . S performance
cards by throwing the deck into the air, picking the cards up at random, and 1
_ | | — Average O(n x n!)M
repeating the process until the deck is sorted. In a worst-case scenario with this
_ _ _ performance
version, the random source is of low quality and happens to make the sorted Worst-case O(1)
permutation unboundedly unlikely to occur. The algorithm's name is a portmanteau space
of the words bogus and sort.[°] complexity

Description of the algorithm et

Pseudocode [edit]

The following is a description of the randomized algorithm in pseudocode:

while not sorted(deck):
shuffle(deck)

Sorting

Recap

. Three O(n?) algorithms: Selection, Insertion, Bubble

» Four O(nlog n) algorithms: Tree, Merge, Quick, Heap

Sorting

Recap

. Three O(n?) algorithms: Selection, Insertion, Bubble

» Four O(nlog n) algorithms: Tree, Merge, Quick, Heap

* [here are a lot more sorting algorithms...

Sorting

Recap

. Three O(n?) algorithms: Selection, Insertion, Bubble

» Four O(nlog n) algorithms: Tree, Merge, Quick, Heap
* [here are a lot more sorting algorithms...

e ... We have time for one more weird one

Counting Sort

Counting Sort

 Count the occurrences of every number

* QOutput each number as many times as it occurs in the original list

Counting Sort

Input
4 | 8

Counts
0 1 10
0 0 0

Counting Sort

Input
4 | 8

Counts
0 1 10
0 0 0

Counting Sort

Input
4 | 8
Counts
0 1 10
0 0 0

Counting Sort

Input
4 | 8

Counts
0 1 10
0 0 0

Counting Sort

Input
4 | 8

Counts
0 1 10
0 0 0

Counting Sort

Input
4 | 8

Counts
0 1 10
0 0 0

Counting Sort

Input
4 | 8

Counts
0 1 10
0 0 0

Counting Sort

Input
4 | 8

Counts
0 1 10
0 0 0

Counting Sort

Input
4 | 8

Counts
0 1 10
0 0 0

Counting Sort

Input
4 | 8

Counts
0 1 10
0 0 0

Counting Sort

Output

Counts
0 1 10
0 0 0

Counting Sort

Output
2 | 2
Counts
0 1 10
0 0 0

Counting Sort

Output
2 | 2
Counts
0 1 10
0 0 0

Counting Sort

Output
2 | 2
Counts
0 1 10
0 0 0

Counting Sort

Output
2 | 2
Counts
0 1 10
0 0 0

Counting Sort

Output
2 | 2
Counts
0 1 10
0 0 0

Counting Sort

Complexity

Counting Sort

Complexity

1. Find the range of values: O(n)

Counting Sort

Complexity

1. Find the range of values: O(n)

2. Initialize array: O(n)

Counting Sort

Complexity

1. Find the range of values: O(n)
2. Initialize array: O(n)

3. Scan the list to count: O(n)

Counting Sort

Complexity

1. Find the range of values: O(n)
2. Initialize array: O(n)
3. Scan the list to count: O(n)

4. Scan the counts to output: O(n)

Counting Sort

Complexity

1. Find the range of values: O(n)
Initialize array: O(n)

Scan the list to count: O(n)

el

Scan the counts to output: O(n)

Overall complexity: O(n)

Counting Sort

Limitations?

Counting Sort

Limitations?

* Only apply to integers -- need to use the value as array indices

Counting Sort

Limitations?

* Only apply to integers -- need to use the value as array indices

 Need extra space:

Counting Sort

Limitations?

* Only apply to integers -- need to use the value as array indices

 Need extra space:

« Counts: O(Range) -- if the input is sparse, this can be a lot

Counting Sort

Limitations?

* Only apply to integers -- need to use the value as array indices

 Need extra space:

« Counts: O(Range) -- if the input is sparse, this can be a lot

e QOutput: O(n)

Counting Sort

Limitations?

* Only apply to integers -- need to use the value as array indices

 Need extra space:

« Counts: O(Range) -- if the input is sparse, this can be a lot
e QOutput: O(n)

* This is almost a Map!

Counting Sort

Limitations?

* Only apply to integers -- need to use the value as array indices

 Need extra space:

« Counts: O(Range) -- if the input is sparse, this can be a lot
e QOutput: O(n)
* This is almost a Map!

» Key: Integer

Counting Sort

Limitations?

* Only apply to integers -- need to use the value as array indices

 Need extra space:

» Counts: O(Range) -- if the input is sparse, this can be a lot
e QOutput: O(n)

* This is almost a Map!
» Key: Integer

 Value: Counts

Counting Sort

Limitations?

Counting Sort

Limitations?

 Can we make this work with any value?

Counting Sort

Limitations?

 Can we make this work with any value?

e Sure, instead of having an array of integers, we can have an array of
whatever values

Counting Sort

Limitations?

 Can we make this work with any value?

e Sure, instead of having an array of integers, we can have an array of
whatever values

* Can we make this work with any key?

Counting Sort

Limitations?

 Can we make this work with any value?

e Sure, instead of having an array of integers, we can have an array of
whatever values

* Can we make this work with any key?

 Turn any key into an integer

Counting Sort

Limitations?

 Can we make this work with any value?

e Sure, instead of having an array of integers, we can have an array of
whatever values

* Can we make this work with any key?
 Turn any key into an integer

 Make the range of the integer reasonable

