
Konstantinos Ameranis, July 16

Asymptotic Complexity
Sorting
CS143: lecture 11

Asymptotic Complexity

Asymptotic Complexity

Asymptotic Complexity

• In two papers Konstantinos found
two algorithms for the same problem

Asymptotic Complexity

• In two papers Konstantinos found
two algorithms for the same problem

• How do we compare which one is
faster?

Asymptotic Complexity

• In two papers Konstantinos found
two algorithms for the same problem

• How do we compare which one is
faster?

• One idea is to compare which one
runs faster on various inputs

Asymptotic Complexity

• In two papers Konstantinos found
two algorithms for the same problem

• How do we compare which one is
faster?

• One idea is to compare which one
runs faster on various inputs

• Here are the timings reported in the
papers:

Asymptotic Complexity

• In two papers Konstantinos found
two algorithms for the same problem

• How do we compare which one is
faster?

• One idea is to compare which one
runs faster on various inputs

• Here are the timings reported in the
papers:

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Which one is better? Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Which one is better?

• For small inputs Algorithm A seems
better

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Which one is better?

• For small inputs Algorithm A seems
better

• But for larger inputs Algorithm B
seems to achieve better times

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Which one is better?

• For small inputs Algorithm A seems
better

• But for larger inputs Algorithm B
seems to achieve better times

• Except the last input where
Algorithm A finishes much much
faster

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Reading further in the papers reveal
more information

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Reading further in the papers reveal
more information

• Algorithm A is implemented in C and
Algorithm B is implemented in Python

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Reading further in the papers reveal
more information

• Algorithm A is implemented in C and
Algorithm B is implemented in Python

• Algorithm B was run in a computing
cluster on an Intel Xeon CPU and
Algorithm A was run in a Pentium 4
desktop CPU

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Reading further in the papers reveal
more information

• Algorithm A is implemented in C and
Algorithm B is implemented in Python

• Algorithm B was run in a computing
cluster on an Intel Xeon CPU and
Algorithm A was run in a Pentium 4
desktop CPU

• The last input is actually a special case
where Algorithm A bypasses most of the
work needed

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Which one is better? Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Which one is better?

• It depends

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Which one is better?

• It depends

• Implementation

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Which one is better?

• It depends

• Implementation

• Architecture

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Which one is better?

• It depends

• Implementation

• Architecture

• Input

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

• Which one is better?

• It depends

• Implementation

• Architecture

• Input

• …

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s

Asymptotic Complexity

Asymptotic Complexity

• A better idea: 
Count basic operations needed as a function of input in the worst case

Asymptotic Complexity

• A better idea: 
Count basic operations needed as a function of input in the worst case

+ Pros:

Asymptotic Complexity

• A better idea: 
Count basic operations needed as a function of input in the worst case

+ Pros:

• Exact computation

Asymptotic Complexity

• A better idea: 
Count basic operations needed as a function of input in the worst case

+ Pros:

• Exact computation

❌ Cons:

Asymptotic Complexity

• A better idea: 
Count basic operations needed as a function of input in the worst case

+ Pros:

• Exact computation

❌ Cons:

• Very time consuming to compute exactly

Asymptotic Complexity

• A better idea: 
Count basic operations needed as a function of input in the worst case

+ Pros:

• Exact computation

❌ Cons:

• Very time consuming to compute exactly

• For different sizes which one is better changes

Asymptotic Complexity

• A better idea: 
Count basic operations needed as a function of input in the worst case

+ Pros:

• Exact computation

❌ Cons:

• Very time consuming to compute exactly

• For different sizes which one is better changes

• For small inputs all algorithms will take similar times

Asymptotic Complexity

• A better idea: 
Count basic operations needed as a function of input in the worst case

+ Pros:

• Exact computation

❌ Cons:

• Very time consuming to compute exactly

• For different sizes which one is better changes

• For small inputs all algorithms will take similar times

• But for large inputs a linear and a quadratic algorithm will have very different run times

Asymptotic Complexity

Asymptotic Complexity

• Let and f(n) = 80n g(n) = 6n2

Asymptotic Complexity

• Let and f(n) = 80n g(n) = 6n2

• lim
n→∞

f(n)
g(n)

= lim
n→∞

80n
6n2

= lim
n→∞

80
6n

= 0

Asymptotic Complexity

• Let and f(n) = 80n g(n) = 6n2

• lim
n→∞

f(n)
g(n)

= lim
n→∞

80n
6n2

= lim
n→∞

80
6n

= 0

• Therefore as grows at least as fast as n → ∞ g(n) f(n)

Asymptotic Complexity

• Let and f(n) = 80n g(n) = 6n2

• lim
n→∞

f(n)
g(n)

= lim
n→∞

80n
6n2

= lim
n→∞

80
6n

= 0

• Therefore as grows at least as fast as n → ∞ g(n) f(n)

• From this point on we will say that f(n) ∈ O (g(n))

Asymptotic Complexity

Symbol Limit definition Constant definition Relation Name

Big-O

Big-Omega

Theta

little-o

little-
omega

f(n) ∈ O (g(n))
f(n) ∈ Ω (g(n))

lim sup
n→∞

f(n)
g(n)

∈ ℝ ∃ n0 ∈ ℕ, c ∈ ℝ : ∀ n > n0 f(n) ≤ c ⋅ g(n) ≤

lim sup
n→∞

f(n)
g(n)

> 0 ∃ n0 ∈ ℕ, c ∈ ℝ : ∀ n > n0 f(n) ≥ c ⋅ g(n) ≥

f(n) ∈ Θ (g(n)) 0 < lim sup
n→∞

f(n)
g(n)

∈ ℝ ∃ n0 ∈ ℕ, c1, c2 ∈ ℝ : ∀ n > n0 c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n) =

f(n) ∈ o (g(n)) lim sup
n→∞

f(n)
g(n)

= 0 ∀c ∈ ℝ∃ n0 ∈ ℕ : ∀ n > n0 f(n) ≤ c ⋅ g(n) <

f(n) ∈ ω (g(n)) lim sup
n→∞

f(n)
g(n)

= + ∞ ∀c ∈ ℝ∃ n0 ∈ ℕ : ∀ n > n0 f(n) ≥ c ⋅ g(n) <

Asymptotic Complexity
L'Hôpital's rule

Asymptotic Complexity
L'Hôpital's rule

• Complexity functions tend to be increasing and unbounded

Asymptotic Complexity
L'Hôpital's rule

• Complexity functions tend to be increasing and unbounded

• As both and go to n → ∞ f(n) g(n) ∞

Asymptotic Complexity
L'Hôpital's rule

• Complexity functions tend to be increasing and unbounded

• As both and go to n → ∞ f(n) g(n) ∞

• In this case L'Hôpital's rule applies

Asymptotic Complexity
L'Hôpital's rule

• Complexity functions tend to be increasing and unbounded

• As both and go to n → ∞ f(n) g(n) ∞

• In this case L'Hôpital's rule applies

• lim sup
n→∞

f(n)
g(n)

= lim sup
n→∞

f′￼(n)
g′￼(n)

Asymptotic Complexity
L'Hôpital's rule

• Complexity functions tend to be increasing and unbounded

• As both and go to n → ∞ f(n) g(n) ∞

• In this case L'Hôpital's rule applies

• lim sup
n→∞

f(n)
g(n)

= lim sup
n→∞

f′￼(n)
g′￼(n)

• For example: lim sup
n→∞

3 + 80n
3 + 6n + 6n2

= lim sup
n→∞

80
6 + 12n

= 0

Asymptotic Complexity
Properties

Asymptotic Complexity
Properties

• Coefficients can be dropped: f(n) = c ⋅ g(n) = O (g(n))

Asymptotic Complexity
Properties

• Coefficients can be dropped: f(n) = c ⋅ g(n) = O (g(n))
• Using the constant definition the proof is straightforward

Asymptotic Complexity
Properties

• Coefficients can be dropped: f(n) = c ⋅ g(n) = O (g(n))
• Using the constant definition the proof is straightforward

• In a polynomial only the largest power matters

Asymptotic Complexity
Properties

• Coefficients can be dropped: f(n) = c ⋅ g(n) = O (g(n))
• Using the constant definition the proof is straightforward

• In a polynomial only the largest power matters

f(n) = aknk + … + a0 = O(nk)

Asymptotic Complexity
Properties

• Coefficients can be dropped: f(n) = c ⋅ g(n) = O (g(n))
• Using the constant definition the proof is straightforward

• In a polynomial only the largest power matters

f(n) = aknk + … + a0 = O(nk)

lim
n→∞

aknk + … + a0

nk
= lim

n→∞

aknk

nk
+ … +

a0

nk
= ak + … + 0 = ak ∈ ℝ

Asymptotic Complexity
Properties

Asymptotic Complexity
Properties

• Product: If and then f1(n) = O (g1(n)) f2(n) = O (g2(n))
f1(n) ⋅ f2(n) = O (g1(n) ⋅ g2(n))

Asymptotic Complexity
Properties

• Product: If and then f1(n) = O (g1(n)) f2(n) = O (g2(n))
f1(n) ⋅ f2(n) = O (g1(n) ⋅ g2(n))

• Sum: If and then f1(n) = O (g(n)) f2(n) = O (g(n)) f1(n) + f2(n) = O (g(n))

Asymptotic Complexity
Properties

• Product: If and then f1(n) = O (g1(n)) f2(n) = O (g2(n))
f1(n) ⋅ f2(n) = O (g1(n) ⋅ g2(n))

• Sum: If and then f1(n) = O (g(n)) f2(n) = O (g(n)) f1(n) + f2(n) = O (g(n))

Sorting

Sorting
Putting things in order

• What do we have:

• A list of n elements

• A comparison function:

• What do we want:

• The list has all the same elements as it started with

• If , list[i] list[j]

≤

i ≤ j ≤

Sorting
Example

Sorting
Example

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
 min = index of smallest in A[i : n] 
 swap A[min] and A[i]

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
 min = index of smallest in A[i : n] 
 swap A[min] and A[i]

• Why swap instead of pushing things over?

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
 min = index of smallest in A[i : n] 
 swap A[min] and A[i]

• Why swap instead of pushing things over?

• It's more efficient and we don't care about the order of the unsorted part

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
 min = index of smallest in A[i : n] 
 swap A[min] and A[i]

• Why swap instead of pushing things over?

• It's more efficient and we don't care about the order of the unsorted part

• This is called selection sort -- we select the one we want repeatedly.

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
 min = index of smallest in A[i : n] 
 swap A[min] and A[i]

• How many comparisons do we need to do?

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
 min = index of smallest in A[i : n] 
 swap A[min] and A[i]

• How many comparisons do we need to do?

• (n − 1) + (n − 2) + … + 1 = n(n − 1)/2 = O(n2)

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
 min = index of smallest in A[i : n] 
 swap A[min] and A[i]

• How many comparisons do we need to do?

• (n − 1) + (n − 2) + … + 1 = n(n − 1)/2 = O(n2)

• How many swaps?

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
 min = index of smallest in A[i : n] 
 swap A[min] and A[i]

• How many comparisons do we need to do?

• (n − 1) + (n − 2) + … + 1 = n(n − 1)/2 = O(n2)

• How many swaps?

• n − 1

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
 min = index of smallest in A[i : n] 
 swap A[min] and A[i]

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
 min = index of smallest in A[i : n] 
 swap A[min] and A[i]

• Everything left of the line is sorted.

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
 min = index of smallest in A[i : n] 
 swap A[min] and A[i]

• Everything left of the line is sorted.

• Scanning the right (unsorted) part, and putting it to the end of the left (sorted)
part.

Sorting
Example 2

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

Sorting
Example 2: Algorithm

for i = 2 to n: 
 j = i - 1 
 while j > 0 and A[j] > A[i]: 
 A[j + 1] = A[j] 
 j = j - 1 
 A[j] = A[i]

Sorting
Example 2: Algorithm

for i = 2 to n: 
 j = i - 1 
 while j > 0 and A[j] > A[i]: 
 A[j + 1] = A[j] 
 j = j - 1 
 A[j] = A[i]

• Take the first unsorted and
insert it into the right place in
the sorted pile

Sorting
Example 2: Algorithm

for i = 2 to n: 
 j = i - 1 
 while j > 0 and A[j] > A[i]: 
 A[j + 1] = A[j] 
 j = j - 1 
 A[j] = A[i]

• Take the first unsorted and
insert it into the right place in
the sorted pile

• Inserting means shifting
everything after the card by
one place

Sorting
Example 2: Algorithm

for i = 2 to n: 
 j = i - 1 
 while j > 0 and A[j] > A[i]: 
 A[j + 1] = A[j] 
 j = j - 1 
 A[j] = A[i]

• Take the first unsorted and
insert it into the right place in
the sorted pile

• Inserting means shifting
everything after the card by
one place

• This is called insertion sort.

Sorting
Example 2: Algorithm

For i = 2 to n:

 j = i - 1

 while j > 0 and A[j] > A[i]:

 A[j + 1] = A[j]

 j = j - 1

 A[j] = A[i]

Sorting
Example 2: Algorithm

For i = 2 to n:

 j = i - 1

 while j > 0 and A[j] > A[i]:

 A[j + 1] = A[j]

 j = j - 1

 A[j] = A[i]

• Comparison: worst-case
O(n2)

Sorting
Example 2: Algorithm

For i = 2 to n:

 j = i - 1

 while j > 0 and A[j] > A[i]:

 A[j + 1] = A[j]

 j = j - 1

 A[j] = A[i]

• Comparison: worst-case
O(n2)

• Swap: worst-case O(n2)

Sorting
Example 2: Algorithm

For i = 2 to n: 
 j = i - 1 
 while j > 0 and A[j] > A[i]: 
 A[j + 1] = A[j] 
 j = j - 1 
 A[j] = A[i]

Sorting
Example 2: Algorithm

For i = 2 to n: 
 j = i - 1 
 while j > 0 and A[j] > A[i]: 
 A[j + 1] = A[j] 
 j = j - 1 
 A[j] = A[i]

• Everything left of the line is
sorted

Sorting
Example 2: Algorithm

For i = 2 to n: 
 j = i - 1 
 while j > 0 and A[j] > A[i]: 
 A[j + 1] = A[j] 
 j = j - 1 
 A[j] = A[i]

• Everything left of the line is
sorted

• Take the first one on the right,
scanning the left to find a
place.

Sorting
Example 3

• Take two cards, swap them if out of order.

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3: Algorithm

while True:

 swapped = False

 for i = 0 to n - 1:

 if A[i] > A[i + 1]:

 swap A[i], A[i + 1]

 swapped = True

 if not swapped:

 break

Sorting
Example 3: Algorithm

while True:

 swapped = False

 for i = 0 to n - 1:

 if A[i] > A[i + 1]:

 swap A[i], A[i + 1]

 swapped = True

 if not swapped:

 break

• Swap two adjacent elements if
they are out of order

Sorting
Example 3: Algorithm

while True:

 swapped = False

 for i = 0 to n - 1:

 if A[i] > A[i + 1]:

 swap A[i], A[i + 1]

 swapped = True

 if not swapped:

 break

• Swap two adjacent elements if
they are out of order

• How many rounds do we need
to sort the entire list?

Sorting
Example 3: Algorithm

while True:

 swapped = False

 for i = 0 to n - 1:

 if A[i] > A[i + 1]:

 swap A[i], A[i + 1]

 swapped = True

 if not swapped:

 break

• Swap two adjacent elements if
they are out of order

• How many rounds do we need
to sort the entire list?

• . Why?n

Sorting
Example 3: Algorithm

while True:

 swapped = False

 for i = 0 to n - 1:

 if A[i] > A[i + 1]:

 swap A[i], A[i + 1]

 swapped = True

 if not swapped:

 break

• Swap two adjacent elements if
they are out of order

• How many rounds do we need
to sort the entire list?

• . Why?n
• Every round, the largest

element is pushed to the right.

Sorting
Example 3: Algorithm

while True:

 swapped = False

 for i = 0 to n - 1:

 if A[i] > A[i + 1]:

 swap A[i], A[i + 1]

 swapped = True

 if not swapped:

 break

• Swap two adjacent elements if
they are out of order

• How many rounds do we need
to sort the entire list?

• . Why?n
• Every round, the largest

element is pushed to the right.

• comparisons,
swaps
O(n2) O(n2)

Sorting
Example 3: Algorithm

while True:

 swapped = False

 for i = 0 to n - 1:

 if A[i] > A[i + 1]:

 swap A[i], A[i + 1]

 swapped = True

 if not swapped:

 break

Sorting
Example 3: Algorithm

while True:

 swapped = False

 for i = 0 to n - 1:

 if A[i] > A[i + 1]:

 swap A[i], A[i + 1]

 swapped = True

 if not swapped:

 break

• The largest element "bubbles"
up.

Sorting
Example 3: Algorithm

while True:

 swapped = False

 for i = 0 to n - 1:

 if A[i] > A[i + 1]:

 swap A[i], A[i + 1]

 swapped = True

 if not swapped:

 break

• The largest element "bubbles"
up.

• This is called bubble sort.

Sorting

Sorting

• Three algorithms: Insertion sort, selection sort, bubble sortO(n2)

Sorting

• Three algorithms: Insertion sort, selection sort, bubble sortO(n2)
• There are better algorithms

Sorting

• Three algorithms: Insertion sort, selection sort, bubble sortO(n2)
• There are better algorithms

• We will revisit after learning about trees!

Sorting

• Three algorithms: Insertion sort, selection sort, bubble sortO(n2)
• There are better algorithms

• We will revisit after learning about trees!

• It's a whole can of worms

Sorting

• Three algorithms: Insertion sort, selection sort, bubble sort

• There are better algorithms

• We will revisit after learning about trees!

• It's a whole can of worms

O(n2)

Function Pointers

Function Pointers

Function Pointers

• Your code lives in memory too!

Function Pointers

• Your code lives in memory too!

• ...so they have addresses

Function Pointers

• Your code lives in memory too!

• ...so they have addresses

• ...so just like we have pointers to data, we have pointers to functions as well

Function Pointers

• Your code lives in memory too!

• ...so they have addresses

• ...so just like we have pointers to data, we have pointers to functions as well

• What's the point?

Function Pointers

• Your code lives in memory too!

• ...so they have addresses

• ...so just like we have pointers to data, we have pointers to functions as well

• What's the point?

• We can pass functions around!

Function Pointers
Example

Function Pointers
Example

void alist_sort(struct alist *l, int (*cmp)(void *, void *))

Function Pointers
Example

void alist_sort(struct alist *l, int (*cmp)(void *, void *))

• The second argument to this function is

Function Pointers
Example

void alist_sort(struct alist *l, int (*cmp)(void *, void *))

• The second argument to this function is

• A function pointer called cmp

Function Pointers
Example

void alist_sort(struct alist *l, int (*cmp)(void *, void *))

• The second argument to this function is

• A function pointer called cmp

• The function that cmp points to takes two void * and returns int

Function Pointers
Example

void alist_sort(struct alist *l, int (*cmp)(void *, void *))

• The second argument to this function is

• A function pointer called cmp

• The function that cmp points to takes two void * and returns int

• It tells the sorting function how to compare two arbitrary elements

Function Pointers
Example

void alist_sort(struct alist *l, int (*cmp)(void *, void *))

• The second argument to this function is

• A function pointer called cmp

• The function that cmp points to takes two void * and returns int

• It tells the sorting function how to compare two arbitrary elements

• (negative if 1 < 2, 0 if 1 == 2, positive if 1 > 2)

Function Pointers
Example

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {
 void *tmp = l->elems[i];

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {
 void *tmp = l->elems[i];
 l->elems[i] = l->elems[i + 1];

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {
 void *tmp = l->elems[i];
 l->elems[i] = l->elems[i + 1];
 l->elems[i + 1] = tmp;

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {
 void *tmp = l->elems[i];
 l->elems[i] = l->elems[i + 1];
 l->elems[i + 1] = tmp;
 swapped = 1;

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {
 void *tmp = l->elems[i];
 l->elems[i] = l->elems[i + 1];
 l->elems[i + 1] = tmp;
 swapped = 1;
 }

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {
 void *tmp = l->elems[i];
 l->elems[i] = l->elems[i + 1];
 l->elems[i + 1] = tmp;
 swapped = 1;
 }
 }

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {
 void *tmp = l->elems[i];
 l->elems[i] = l->elems[i + 1];
 l->elems[i + 1] = tmp;
 swapped = 1;
 }
 }

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {
 void *tmp = l->elems[i];
 l->elems[i] = l->elems[i + 1];
 l->elems[i + 1] = tmp;
 swapped = 1;
 }
 }

 if (!swapped) {

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {
 void *tmp = l->elems[i];
 l->elems[i] = l->elems[i + 1];
 l->elems[i + 1] = tmp;
 swapped = 1;
 }
 }

 if (!swapped) {
 break;

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {
 void *tmp = l->elems[i];
 l->elems[i] = l->elems[i + 1];
 l->elems[i + 1] = tmp;
 swapped = 1;
 }
 }

 if (!swapped) {
 break;
 }

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {
 void *tmp = l->elems[i];
 l->elems[i] = l->elems[i + 1];
 l->elems[i + 1] = tmp;
 swapped = 1;
 }
 }

 if (!swapped) {
 break;
 }
 }

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {
 for (;;) {
 int swapped = 0;
 for (int i = 0; i < l->length; i++) {
 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {
 void *tmp = l->elems[i];
 l->elems[i] = l->elems[i + 1];
 l->elems[i + 1] = tmp;
 swapped = 1;
 }
 }

 if (!swapped) {
 break;
 }
 }
}

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *));

int strcmp_wrapper(void *s1, void *s2) {

 return strcmp(s1, s2);

}

int main(void) {

 struct alist l;

 alist_sort(&l, &strcmp_wrapper);

 return 0;

}

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *));

int strcmp_wrapper(void *s1, void *s2) {

 return strcmp(s1, s2);

}

int main(void) {

 struct alist l;

 alist_sort(&l, &strcmp_wrapper);

 return 0;

}

^ optional

