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* |n two papers Konstantinos found
two algorithms for the same problem

e How do we compare which one is
faster?

* One idea is to compare which one
runs faster on various inputs

* Here are the timings reported in the
papers:
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 Which one is better?

 For small inputs Algorithm A seems
better

 But for larger inputs Algorithm B
seems to achieve better times

* EXxcept the last input where
Algorithm A finishes much much
faster
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 Reading further in the papers reveal
more information

* Algorithm A is implemented in C and
Algorithm B Is implemented in Python

* Algorithm B was run in a computing
cluster on an Intel Xeon CPU and
Algorithm A was run in a Pentium 4

desktop CPU

* The last input is actually a special case
where Algorithm A bypasses most of the
work needed
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* A better idea:
Count basic operations needed as a function of input in the worst case

== Pros:

* Exact computation
X Cons:

* \ery time consuming to compute exactly
* For different sizes which one is better changes
* For small inputs all algorithms will take similar times

* But for large inputs a linear and a quadratic algorithm will have very different run times
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. Let f(n) = 80n and g(n) = 6n°

. f(n) . 80mn 80
. Iim = lm —=Ilm — =20
11— 00 g(n) n—oco 6N n—oo 61

» Therefore as n — oo g(n) grows at least as fast as f(n)

 From this point on we will say that f(n) € O (g(n))
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Symbol Limit definition Constant definition Relation| Name
f(n) € O (g(n)) hrnnaillpg(_lf/”ll) eR |dnyeN,ceR:Vn>n, f(n)<c-gh) < Big-O
f(n) € Q (g(n)) liiizlp% >0 |[dngeN,ceR:Vun>n, f(n)=>c-gh) > |Big-Omega
f(n) e ® (g(n)) 0 < liI’jl_)illp f;((’;)) eR| IngeN,c,c,€R:Vrn>ny, ¢ -gn) < fn)<c-gn) = Theta
fin) €0 (gm) |  1im sup ; ((':l)) —0 \VceRdnyeN:Vn>ny, fn)<c-gn) | < ittle-o
fn) € w (g(n)) hiilp (];((’;)) 1o | VceERIN EN:V>n, fn)>2c-gn) | < O'::';J-a
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L'Hopital's rule

 Complexity functions tend to be increasing and unbounded

e Asn — oo both f(n) and g(n) go to oo

* |n this case L'Hopital's rule applies

I fn) . f(n)
. lim sup = lim sup —
-0 8 pne &M
3+ 80n 30

For example: Iim sup ——— = lim su = ()
P n_)oop?)+6n+6n2 n_>oop6+12n
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Properties

» Coefficients can be dropped: f(n) =c - g(n) = O (g(n))
* Using the constant definition the proof is straightforward

* |n a polynomial only the largest power matters

fn) = an® + ... + ay = O(n®)
k

aknk + ...+ 4 an a

nlgzlo " =’}LI£10 " +...+ﬁ=ak+...+():aket
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Properties

. Product: If fi(n) = O (g,(n)) and fo(n) = O (g,(n)) then
fH(n) - fr(n) =0 (81(") ‘ 82(”))

. Sum: If f;(n) = O (g(n)) and fo(n) = O (g(n)) then fi(n) + fo(n) = O (g(n))






Sorting

Putting things in order

e What do we have:

e A Jist of n elements

o A comparison function: <
 \What do we want:

e The list has all the same elements as It started with

e If1 < j,1ist[i] < list[j]
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Sorting

Example 1 (how | do it): Algorithm

For 1 =1 ton - 1:
min = 1ndex of smallest 1n A[1 : n]
swap A[min] and A[1.

 Why swap instead of pushing things over?
e |t's more efficient and we don't care about the order of the unsorted part

 This is called selection sort -- we select the one we want repeatedly.
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Example 1 (how | do it): Algorithm

For 1 =1 ton - 1:
min = 1ndex of smallest 1n A[1l
swap A[min] and A[1.

 How many comparisons do we need to do?

e n=D+mn=2)+...+1=nn-1/2 = 00>

* How many swaps?

e n—1
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Sorting

Example 1 (how | do it): Algorithm

For 1 =1 ton - 1:
min = 1ndex of smallest 1n A[1 : n]
swap A[min] and A[1.

* Everything left of the line is sorted.

* Scanning the right (unsorted) part, and putting it to the end of the left (sorted)
part.
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Example 2: Algorithm
for 1 = 2 to n
T =1 - 1
while 7 > 0 and
Al + 1] = A
) =3 - 1
[ 1]

5
.
|
5
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* Take the first unsorted and
iInsert it into the right place in
the sorted pile
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Sorting

Example 2: Algorithm
for 1 = 2 to n * Jake the first unsorted and
J =1 -1 insert it into the right place in
whille I 0 and A[j] > Afl1]: the sorted p||e
AljJ + 1] = A[J]
3 =13 -1 * Inserting means shifting
AlJ] = Al1] everything after the card by
one place

e This Is called insertion sort.
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For 1 = 2 to n:  Comparison: worst-case
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Example 2: Algorithm
For 1 = 2 to n:  Comparison: worst-case
j =i -1 O(n)
while 4 > 0 and A[4] > A[i]: * Swap: worst-case O(n”)
AlJ + 1] = A[J]
J =3 -1
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For 1 = 2 t
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while 7 > 0 an
A[: + 1] =
] = J -
[ 1]
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Example 2: Algorithm
For 1 = 2 to n: * Everything left of the line is
J =1 -1 sorted
while 7 > 0 and A[]J] > A[1]
Al + 1] = A[7]
] =3 -1
[ 1]



Sorting

Example 2: Algorithm
For 1 = 2 to n * Everything left of the line is
J =1 -1 sorted
while 7 > 0 and A[]J] > A[1]
Al + 1] = A[J] « Take the first one on the right,
) = j[ ]— 1 scanning the left to find a

5
.

|
5
|_|-

place.
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 Take two cards, swap them if out of order.
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while True:

swapped = False
= 0 to n -
1+ 1]:

for 1

1

' —

L f A[1]

> A

swap A[1l.

swapped

break

1f not swapped:

4

Al1 + 1]

True
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while True:  Swap two adjacent elements if

swapped = False they are out of order

for i = 0 ton - 1- « How many rounds do we need
to sort the entire list?

1f A[1] > A[1 + 1]:
swap A[i], A[1 + 1] * n. Why?

swapped = True

| | —

1f not swapped:

break
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Example 3: Algorithm

while True:

swapped = False
= 0 to n -
1+ 1]:

for 1

1

1 —

L f A[1]

> A

swap A[1l.

swapped

break

1f not swapped:

4

Al1 + 1]

True

 Swap two adjacent elements if

they are out of order

« How many rounds do we need

to sort the entire list?
e n. Why?

* Every round, the largest
element is pushed to the right.
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while True:  Swap two adjacent elements if

swapped = False they are out of order

« How many rounds do we need
L . . to sort the entire list?
1f A[1] > A1 + 1]7:

swap A[i], A[1 + 1] * n. Why?

swapped = True * Every round, the largest
element is pushed to the right.

for 1 = 0 ton - 1:

o~

1f not swapped:

. O(n*) comparisons, O(n?)
sSwaps

break
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while True:

swapped = False
= 0 to n -
1+ 1]:

for 1

1

' —

L f A[1]

> A

swap A[1l.

swapped

break

1f not swapped:

4
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True
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while True: * The largest element "bubbles”
swapped = False up.
for 1 = 0 ton - 1:

1f Al1] > A1 + 1]:
swap A[i], A[i + 1]

swapped = True

' —

1f not swapped:

break
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Example 3: Algorithm

while True: * The largest element "bubbles”
swapped = False up.
for i = 0 ton - 1: * This Is called bubble sort.

1f Al1] > A1 + 1]:
swap A[i], A[i + 1]

swapped = True

1 —

1f not swapped:

break
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 [hree O(nz) algorithms: Insertion sort, selection sort, bubble sort
* There are better algorithms
* We will revisit after learning about trees!

e |t's a whole can of worms
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. Three O(n”
e There are be
e We will re

e |t's a whole

Sort Benchmark Home Page

New: We are happy to announce the 2022 winners listed below. The new, 2022 records are listed in green. Congratulations to the winners!

Background

Until 2007, the sort benchmarks were primarily defined, sponsored and administered by Jim Gray. Following Jim's disappearance at sea in January 2007, the
colleagues and sort benchmark winners. The Sort Benchmark committee members include:

e Chris Nyberg of Ordinal Technology Corp
e Mehul Shah of Aryn.ai

» George Porter of UC San Diego Computer Science & Engineering Dept

Top Results

2016, 44.8 TB/min

Tencent Sort
100 TB in 134 Seconds

512 nodes x (2 OpenPOWER 10-core POWERS 2.926 GHz,
512 GB memory, 4x Huawei ES3600P V3 1.2TB NVMe SSD,

100Gb Mellanox ConnectX4-EN)

Jie Jiang, Lixiong Zheng, Junfeng Pu,

Xiong Cheng, Chongqing Zhao
Tencent Corporation

Mark R. Nutter, Jeremy D. Schaub

2016, $51.44 / TB

NADSort

100 TB for $144

394 Alibaba Cloud ECS ecs.n1.large nodes x
(Haswell E5-2680 v3, 8 GB memory,
40GB Ultra Cloud Disk, 4x 135GB SSD Cloud Disk)
Qian Wang, Rong Gu, Yihua Huang

Nanjing University
Reynold Xin
Databricks Inc.

Wei Wu, Jun Song, Junluan Xia
Alibaba Group Inc.

2016, 37 TB

2016, 60.7 TB/min

Tencent Sort
100 TB in 98.8 Seconds
512 nodes x (2 OpenPOWER 10-core POWERS 2.926 GHz,
512 GB memory, 4x Huawei ES3600P V3 1.2TB NVMe SSD,
100Gb Mellanox ConnectX4-EN)
Jie Jiang, Lixiong Zheng, Junfeng Pu,
Xiong Cheng, Chongqing Zhao
Tencent Corporation
Mark R. Nutter, Jeremy D. Schaub

2022, 50.97 / TB

Exoshuffle-CloudSort
100 TB for $97
40 Amazon EC2 i4i.4xlarge nodes
1 Amazon EC2 réi.2xlarge node
Amazon S3 storage
Frank Sifei Luan
UC Berkeley
Stephanie Wang
UC Berkeley and Anyscale
Samyukta Yagati, Sean Kim, Kenneth Lien, Isaac Ong, Tony Hong
UC Berkeley
SangBin Cho, Eric Liang
Anyscale
lon Stoica
UC Berkeley and Anyscale

2016, 55 TB

q
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Function Pointers

* Your code lives In memory too!

e ...S0 they have addresses

e ...S0 just like we have pointers to data, we have pointers to functions as well
 What's the point?

* \We can pass functions around!
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volid alist sort(struct alist *1, int (*cmp) (void *, wvoid *))

 The second argument to this function is

« A function pointer called cmp
 The function that cmp points to takes two void * and returns int

|t tells the sorting function how to compare two arbitrary elements



Function Pointers

Example

volid alist sort(struct alist *1, int (*cmp) (void *, wvoid *))

 The second argument to this function is

« A function pointer called cmp
 The function that cmp points to takes two void * and returns int

|t tells the sorting function how to compare two arbitrary elements

* (negativeif1<2,0if 1 ==2, positive if 1 > 2)
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vold alist sort(struct alist *1, int (*cmp) (void *, void *)) {
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for (;;) |
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int swapped = 0;
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for (int 1 = 0; 1 < 1l->length; 1++) {
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1f (cmp(l->elems[1], l->elems[1 + 1]) < 0) {
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vold *tmp = l->elems|[1];
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l->elems[1] = 1->elems[1 + 1];
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l->elems[1 + 1] = tmp;
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swapped = 1;



Function Pointers

Example



Function Pointers

Example



Function Pointers

Example



Function Pointers

Example

1f (!swapped) {
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break;
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vold alist sort(struct alist *1, int (*cmp) (void *, void *));
1nt strcmp wrapper (void *sl, void *s2) {
return strcmp(sl, s2);

J

int main(void) {
struct alist 1;
alist sort (&l, &strcmp wrapper):;

return 0;



Function Pointers

Example

vold alist sort(struct alist *1, int (*cmp) (void *, void *));

1nt strcmp wrapper (void *sl, void *s2) {
return strcmp(sl, s2);

J

int main(void) {
struct alist 1;
alist sort(&l, &strcmp wrapper):;

return 0; |
~ optional



