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• One idea is to compare which one 
runs faster on various inputs

• Here are the timings reported in the 
papers:
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• For small inputs Algorithm A seems 
better

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s



Asymptotic Complexity

• Which one is better?

• For small inputs Algorithm A seems 
better

• But for larger inputs Algorithm B 
seems to achieve better times

Size (n) Algorithm A Algorithm B

100 0.01s 0.12s

500 0.05s 0.22s

1,000 0.13s 0.55s

5,000 1.03s 1.12s

10,000 2.32s 2.18s

10,000 5.41s 3.18s

50,000 10.44s 6.27s

100,000 15.38s 10.46s

1,000,000 232.48s 103.72s

1,000,000 32.43s 108.37s



Asymptotic Complexity
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• For small inputs Algorithm A seems 
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• But for larger inputs Algorithm B 
seems to achieve better times
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Algorithm A finishes much much 
faster
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• Reading further in the papers reveal 
more information

• Algorithm A is implemented in C and 
Algorithm B is implemented in Python

• Algorithm B was run in a computing 
cluster on an Intel Xeon CPU and 
Algorithm A was run in a Pentium 4 
desktop CPU

• The last input is actually a special case 
where Algorithm A bypasses most of the 
work needed
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Asymptotic Complexity

• A better idea: 
Count basic operations needed as a function of input in the worst case

+ Pros:

• Exact computation

❌ Cons:

• Very time consuming to compute exactly

• For different sizes which one is better changes

• For small inputs all algorithms will take similar times

• But for large inputs a linear and a quadratic algorithm will have very different run times
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• Let  and f(n) = 80n g(n) = 6n2

• lim
n→∞

f(n)
g(n)

= lim
n→∞

80n
6n2

= lim
n→∞

80
6n

= 0

• Therefore as   grows at least as fast as n → ∞ g(n) f(n)

• From this point on we will say that f(n) ∈ O (g(n))
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Symbol Limit definition Constant definition Relation Name

Big-O

Big-Omega

Theta

little-o

little-
omega

f(n) ∈ O (g(n))
f(n) ∈ Ω (g(n))

lim sup
n→∞

f(n)
g(n)

∈ ℝ ∃ n0 ∈ ℕ, c ∈ ℝ : ∀ n > n0 f(n) ≤ c ⋅ g(n) ≤

lim sup
n→∞

f(n)
g(n)

> 0 ∃ n0 ∈ ℕ, c ∈ ℝ : ∀ n > n0 f(n) ≥ c ⋅ g(n) ≥

f(n) ∈ Θ (g(n)) 0 < lim sup
n→∞

f(n)
g(n)

∈ ℝ ∃ n0 ∈ ℕ, c1, c2 ∈ ℝ : ∀ n > n0 c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n) =

f(n) ∈ o (g(n)) lim sup
n→∞

f(n)
g(n)

= 0 ∀c ∈ ℝ∃ n0 ∈ ℕ : ∀ n > n0 f(n) ≤ c ⋅ g(n) <

f(n) ∈ ω (g(n)) lim sup
n→∞

f(n)
g(n)

= + ∞ ∀c ∈ ℝ∃ n0 ∈ ℕ : ∀ n > n0 f(n) ≥ c ⋅ g(n) <
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Asymptotic Complexity
L'Hôpital's rule

• Complexity functions tend to be increasing and unbounded

• As  both  and  go to n → ∞ f(n) g(n) ∞

• In this case L'Hôpital's rule applies

• lim sup
n→∞

f(n)
g(n)

= lim sup
n→∞

f′￼(n)
g′￼(n)

• For example: lim sup
n→∞

3 + 80n
3 + 6n + 6n2

= lim sup
n→∞

80
6 + 12n

= 0
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Asymptotic Complexity
Properties

• Coefficients can be dropped: f(n) = c ⋅ g(n) = O (g(n))
• Using the constant definition the proof is straightforward

• In a polynomial only the largest power matters

f(n) = aknk + … + a0 = O(nk)

lim
n→∞

aknk + … + a0

nk
= lim

n→∞

aknk

nk
+ … +

a0

nk
= ak + … + 0 = ak ∈ ℝ
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Sorting
Putting things in order

• What do we have:


• A list of n elements


• A comparison function: 


• What do we want:


• The list has all the same elements as it started with


• If , list[i]  list[j]

≤

i ≤ j ≤
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For i = 1 to n - 1: 
    min = index of smallest in A[i : n] 
    swap A[min] and A[i]

• Why swap instead of pushing things over?

• It's more efficient and we don't care about the order of the unsorted part

• This is called selection sort -- we select the one we want repeatedly.
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Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
    min = index of smallest in A[i : n] 
    swap A[min] and A[i]

• How many comparisons do we need to do?

• (n − 1) + (n − 2) + … + 1 = n(n − 1)/2 = O(n2)

• How many swaps?

• n − 1
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Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1: 
    min = index of smallest in A[i : n] 
    swap A[min] and A[i]

• Everything left of the line is sorted.

• Scanning the right (unsorted) part, and putting it to the end of the left (sorted) 
part.
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        j = j - 1 
    A[j] = A[i]

• Take the first unsorted and 
insert it into the right place in 
the sorted pile

• Inserting means shifting 
everything after the card by 
one place

• This is called insertion sort.
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Example 2: Algorithm

For i = 2 to n: 
    j = i - 1 
    while j > 0 and A[j] > A[i]: 
        A[j + 1] = A[j] 
        j = j - 1 
    A[j] = A[i]

• Everything left of the line is 
sorted

• Take the first one on the right, 
scanning the left to find a 
place.
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while True:
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    for i = 0 to n - 1:


        if A[i] > A[i + 1]:


           swap A[i], A[i + 1]


           swapped = True


    if not swapped:


        break

• Swap two adjacent elements if 
they are out of order

• How many rounds do we need 
to sort the entire list?

• . Why?n
• Every round, the largest 

element is pushed to the right.

•  comparisons,  
swaps
O(n2) O(n2)
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Example 3: Algorithm

while True:


    swapped = False


    for i = 0 to n - 1:


        if A[i] > A[i + 1]:


           swap A[i], A[i + 1]


           swapped = True


    if not swapped:


        break

• The largest element "bubbles" 
up.

• This is called bubble sort.
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• There are better algorithms


• We will revisit after learning about trees!


• It's a whole can of worms

O(n2)
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Function Pointers

• Your code lives in memory too!

• ...so they have addresses

• ...so just like we have pointers to data, we have pointers to functions as well

• What's the point?

• We can pass functions around!
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Example

void alist_sort(struct alist *l, int (*cmp)(void *, void *))

• The second argument to this function is

• A function pointer called cmp

• The function that cmp points to takes two void * and returns int

• It tells the sorting function how to compare two arbitrary elements

• (negative if 1 < 2, 0 if 1 == 2, positive if 1 > 2)
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^ optional


