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int main(int argc, char *argv|])
* argc — Argument count

* argv — Argument vector

* argv[0] Is the name of the program

* All arguments are strings
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./rgb2hex 128 64 32
0804020

 How to turn string command line arguments to numbers
* Three ways

1. Pure C, working with ASCI|

2. Using stdlib.h

3. Using stdio.h
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*char Int
° II83II _’ 83

° II83II —) |8| |3| I\OI

int digit = '8' - '0';
e By subtracting '0' from the character, you can recover the digit

.+ 83=8*10+3
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// Alphanumeric to integer
1nt atoi(const char *s) {

int number = 0;

for (int i1 = 0; s[i] !'= "\0'; i++) {
int digit = s[1] - '0"';
1f ((digit < 0) || (digit > 9)) {

// This 1is not a valid integer string
// 2?27? Error handling?

J

number = number * 10 + digit;

J

return number;
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if ((digit < 0) || (digit > 9)) {
// This i1s not a valid integer string
// 2?27 Error handling?

J

 What should you do if there is an error?

1. exit (EXIT FAILURE); — Bad idea if writing a library

2. 1int atoi(const char *s, int &errno); — Pass areference to
return an error code (if applicable) =& Too cumbersome and ugly

3. Global errno that is set when appropriate
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e Global errno that is set when appropriate
* crrno IS an enum

* Different values signify different errors

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>

int main (void) {
for (i1nt 1 = 0; 1 < 134; 1++) |
printf ("$3d: %s\n", i, strerror(i));
}
return EXIT SUCCESS;




Strings to numbers
stdlib.h



Strings to numbers
stdlib.h

 Many different ways to write an integer



Strings to numbers
stdlib.h

 Many different ways to write an integer

e 354



Strings to numbers
stdlib.h

 Many different ways to write an integer

e 354

e +354



Strings to numbers
stdlib.h

 Many different ways to write an integer
e 354
e +354

e Ox1o01l



Strings to numbers
stdlib.h

 Many different ways to write an integer

e 354
o +354
e Ox1ol

e 0ob4/



Strings to numbers
stdlib.h

 Many different ways to write an integer

e 354

e +354
e Ox1061
e Job4Z”Z

e 0101100010
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e stdlib has dedicated functions for this

* int atoi(const char *s); — Alphanumeric to integer

* Jlong atol (const char *s); — Alphanumeric to long

* long long atoll (const char *s); — Alphanumeric to long long

* double atof (const char *s); — Alphanumeric to float
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* scanf has similar syntax to printf, but passing by reference to write instead
of read

* Can scan from

B

e Standard input = scanf

—

* File pointer = fscanf

—

e String = sscanf

 Return value is how many variables were read

e sscanf ("354", "3d d sd", &a, &b, &c) ==
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Memory Array

 Each row of data is called a word. Most memories use 8-bit word, a byte.

. 2N_-word X M-bit memory array. [V is the size of an address. M is the smallest
addressable unit.

 An address causes the enable lines of all bit cells in a row to turn on, and their
contents are read/written simultaneously.

* On modern machines, M is almost always 8.

« What is NV, the size of a memory address?

e 64 on 64-bit machine, 32 on 32-bit machine.
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. D32 4.294 967,296 = ~4.3 G of addressable rows.
e 4.2 gigabytes of addressable memory.

* |n order to use beyond 4.2GB, memory addresses need to be bigger.

. 264 18,446,744,073,709,551,616 = 18 exabytes = ~4.2 million gigabytes
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Endian

* We think of an integer as one atomic value:
e nt x = 0x1AZB3C4D;

* But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

: . Most significant

0 1 2 3

byte first
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* |Is my machine little-endian or big-endian?

e |Let's find out!






Endian



Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five



Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five

 But there are some advantages for little-endian:



Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five
 But there are some advantages for little-endian:

* comparing two numbers of different length (long and int e.qg.)



Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five
 But there are some advantages for little-endian:

* comparing two numbers of different length (long and int e.qg.)
e 4E3C2B1A




Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five
 But there are some advantages for little-endian:
* comparing two numbers of different length (long and int e.qg.)
e 4E3C2B1A
e 4E3CZB1A00000000




Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five
 But there are some advantages for little-endian:
* comparing two numbers of different length (long and int e.qg.)
e 4E3C2B1A
e 4E3CZB1A00000000

* addition, subtraction circuits work from low to high



Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five
 But there are some advantages for little-endian:
* comparing two numbers of different length (long and int e.qg.)
e 4E3C2B1A
e 4E3CZB1A00000000

* addition, subtraction circuits work from low to high

* elcC.
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Does it matter?

 Mostly we don't care. Unless you do memory trickery, variables work as
you would expect

» However, when we serialize data into byte sequences, you need to pay
extra attention:

* Writing a number to a file
 Sending a number over a network
* You and the reader must agree on byte order

* For this purpose, network byte order is defined for TCP/IP
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How about returning an array?

int *make 10 of (1nt n)

{

1nt numbers/| ],
for (int 1 = 0; 1 < ;o1++) |
numbers|[i1] = n;

J

return numbers;

int main ()

{

int *ns = make 10 of (42);

return ;

make 10 of

mailin

1: ?°

numbers|[9] :

numbers|[8] :

numbers|[7] :

numbers|[6] :

numbers|[5] :

numbers|[4] :

numbers|[3]:

numbers|[2]:

numbers|[1l]:

numbers[0]:

ns: ?°%?
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How about returning an array?

int *make 10 of (int n)  numbers IS recycled after returning
{
int numbers[10];
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How about returning an array?

?nt *make_10_of (int n)  numbers IS recycled after returning
int numbers[10]; « ns becomes a pointer to invalid/
for (int i = 0; i < 10; i++) | non-existent/dead data.

numbers|[i1] = n; _ _
)  We call ns a dangling pointer

return numbers;

int main ()

{

int *ns = make 10 of (42);

return O; e e >
} : ns: &numbers

maln




