Pointers I

Konstantinos Ameranis, July 2

Characters and numbers

Command line arguments

Review

Command line arguments

Review

int main(int argc, char *argv|])

Command line arguments

Review

int main(int argc, char *argv|])

* argc — Argument count

Command line arguments

Review

int main(int argc, char *argv|])
* argc — Argument count

* argv — Argument vector

Command line arguments

Review

int main(int argc, char *argv|])
* argc — Argument count
* argv — Argument vector

* argv [0] Is the name of the program

Command line arguments

Review

int main(int argc, char *argv|])
* argc — Argument count

* argv — Argument vector

* argv[0] Is the name of the program

* All arguments are strings

Command line arguments

Review

int main(int argc, char *argv|])
* argc — Argument count

* argv — Argument vector

* argv[0] Is the name of the program

* All arguments are strings

./rgb2hex 128 64 32
0x804020

Command line arguments

./rgb2hex 128 64 32
0804020

Command line arguments

./rgb2hex 128 64 32
0804020

 How to turn string command line arguments to numbers

Command line arguments

./rgb2hex 128 64 32
0804020

 How to turn string command line arguments to numbers

* Three ways

Command line arguments

./rgb2hex 128 64 32
0804020

 How to turn string command line arguments to numbers
* Three ways

1. Pure C, working with ASCI|

Command line arguments

./rgb2hex 128 64 32
0804020

 How to turn string command line arguments to numbers
* Three ways
1. Pure C, working with ASCI|

2. Using stdlib.h

Command line arguments

./rgb2hex 128 64 32
0804020

 How to turn string command line arguments to numbers
* Three ways

1. Pure C, working with ASCI|

2. Using stdlib.h

3. Using stdio.h

Strings to numbers
Pure C

*char Int
° II83II _’ 83

+ "83" > g '3 |"\0

Strings to numbers
Pure C

*char Int
° II83II _’ 83

+ "83" > g '3 |"\0

int digit = '8' - '0';

Strings to numbers
Pure C

*char Int
° II83II _’ 83

° II83II —) |8| |3| I\OI

int digit = '8' - '0';

e By subtracting '0' from the character, you can recover the digit

Strings to numbers
Pure C

*char Int
° II83II _’ 83

° II83II —) |8| |3| I\OI

int digit = '8' - '0';
e By subtracting '0' from the character, you can recover the digit

.+ 83=8*10+3

Strings to numbers
Pure C

// Alphanumeric to integer
1nt atoi(const char *s) {

int number = 0;

for (int i1 = 0; s[i] !'= "\0'; i++) {
int digit = s[1] - '0"';
1f ((digit < 0) || (digit > 9)) {

// This 1is not a valid integer string
// 2?27? Error handling?

J

number = number * 10 + digit;

J

return number;

Strings to numbers
Pure C

Strings to numbers
Pure C

1f ((digit < 0) || (digit > 9)) {
// This i1s not a valid integer string
// 2?27 Error handling?

Strings to numbers
Pure C

1f ((digit < 0) || (digit > 9)) {
// This i1s not a valid integer string
// 2?27 Error handling?

J

 What should you do if there is an error?

Strings to numbers
Pure C

1f ((digit < 0) || (digit > 9)) {
// This i1s not a valid integer string
// 2?27 Error handling?

J

 What should you do if there is an error?

1. exit (EXIT FAILURE); — Bad idea if writing a library

Strings to numbers
Pure C

if ((digit < 0) || (digit > 9)) {
// This i1s not a valid integer string
// 2?27 Error handling?

J

 What should you do if there is an error?

1. exit (EXIT FAILURE); — Bad idea if writing a library

2. 1int atoi(const char *s, int &errno); — Pass areference to
return an error code (if applicable) =& Too cumbersome and ugly

Strings to numbers
Pure C

if ((digit < 0) || (digit > 9)) {
// This i1s not a valid integer string
// 2?27 Error handling?

J

 What should you do if there is an error?

1. exit (EXIT FAILURE); — Bad idea if writing a library

2. 1int atoi(const char *s, int &errno); — Pass areference to
return an error code (if applicable) =& Too cumbersome and ugly

3. Global errno that is set when appropriate

Strings to numbers
Pure C

Strings to numbers
Pure C

e Global errno that is set when appropriate

Strings to numbers
Pure C

e Global errno that is set when appropriate

®* crrno IS an enum

Strings to numbers
Pure C

e Global errno that is set when appropriate
* crrno IS an enum

* Different values signify different errors

Strings to numbers
Pure C

e Global errno that is set when appropriate
* crrno IS an enum

* Different values signify different errors

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>

int main (void) {
for (i1nt 1 = 0; 1 < 134; 1++) |
printf ("$3d: %s\n", i, strerror(i));
}
return EXIT SUCCESS;

Strings to numbers
stdlib.h

Strings to numbers
stdlib.h

 Many different ways to write an integer

Strings to numbers
stdlib.h

 Many different ways to write an integer

e 354

Strings to numbers
stdlib.h

 Many different ways to write an integer

e 354

e +354

Strings to numbers
stdlib.h

 Many different ways to write an integer
e 354
e +354

e Ox1o01l

Strings to numbers
stdlib.h

 Many different ways to write an integer

e 354
o +354
e Ox1ol

e 0ob4/

Strings to numbers
stdlib.h

 Many different ways to write an integer

e 354

e +354
e Ox1061
e Job4Z”Z

e 0101100010

Strings to numbers
stdlib.h

Strings to numbers
stdlib.h

e stdlib has dedicated functions for this

Strings to numbers
stdlib.h

e stdlib has dedicated functions for this

* int atoi(const char *s); — Alphanumeric to integer

Strings to numbers
stdlib.h

e stdlib has dedicated functions for this

* int atoi(const char *s); — Alphanumeric to integer

* Jlong atol (const char *s); — Alphanumeric to long

Strings to numbers
stdlib.h

e stdlib has dedicated functions for this

* int atoi(const char *s); — Alphanumeric to integer

* Jlong atol (const char *s); — Alphanumeric to long

* long long atoll (const char *s); — Alphanumeric to long long

Strings to numbers
stdlib.h

e stdlib has dedicated functions for this

* int atoi(const char *s); — Alphanumeric to integer

* Jlong atol (const char *s); — Alphanumeric to long

* long long atoll (const char *s); — Alphanumeric to long long

* double atof (const char *s); — Alphanumeric to float

Strings to numbers
stdio.h

Strings to numbers
stdio.h

* scanf has similar syntax to printf, but passing by reference to write instead
of read

Strings to numbers
stdio.h

* scanf has similar syntax to printf, but passing by reference to write instead
of read

* Can scan from

Strings to numbers
stdio.h

* scanf has similar syntax to printf, but passing by reference to write instead
of read

* Can scan from

e Standard input = scanf

Strings to numbers
stdio.h

* scanf has similar syntax to printf, but passing by reference to write instead
of read

* Can scan from

e Standard input = scanf

—

* File pointer = fscanf

Strings to numbers
stdio.h

* scanf has similar syntax to printf, but passing by reference to write instead
of read

* Can scan from

e Standard input = scanf

—

* File pointer = fscanf

—

e String = sscanf

Strings to numbers
stdio.h

* scanf has similar syntax to printf, but passing by reference to write instead
of read

* Can scan from

e Standard input = scanf

—

* File pointer = fscanf

—

e String = sscanf

 Return value is how many variables were read

Strings to numbers
stdio.h

* scanf has similar syntax to printf, but passing by reference to write instead
of read

* Can scan from

B

e Standard input = scanf

—

* File pointer = fscanf

—

e String = sscanf

 Return value is how many variables were read

e sscanf ("354", "3d d sd", &a, &b, &c) ==

Accessing Memory

Flip-flop

Flip-flop

o
2 4

Flip-flop

o
2 4

Flip-flop

o
2 4

Flip-flop

o
2 4

~
-

Flip-flop

o
2 4

Flip-flop

o
2 4

Flip-flop

o
2 4

Flip-flop

o
2 4

~
-

Flip-flop

>k

2 4

Flip-flop

>k

2 4

Inverted

Bit Line oit Line

~
-

Inverted

Bit Line oit Line

~
-

Enable
Line

Flip-flop

Enable

Bit Cell Bit Line
1

Flip-flop

Enable

Bit Cell Bit Line
1

Flip-flop

Enable

Bit Cell Bit Line
1

Flip-flop

Enable

Bit Cell Bit Line
0

Flip-flop

Enable

Bit Cell
0

Bit Line

Flip-flop

Enable

Bit Cell Bit Line
1

Decoder

Enable

Address
2 bits

Bit/ Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Enable

Address
2 bits

Bit/ Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Enable

Address
2 bits

Bit/ Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Enable
Bit I Bit I Bit I Bit I Bit I Bit I Bit I Bit I
Cell Cell Cell Cell Cell Cell Cell Cell
Address Bit I Bit I Bit I Bit I Bit I Bit I Bit I Bit I
2 bits Cell Cell Cell Cell Cell Cell Cell Cell
Blt Bit I Bit I Bit I Bit I Bit I Bit I Bit I
Cell Cell Cell Cell Cell Cell Cell Cell

CeII Cell Cell Cell Cell Cell Cell Cell

Bit/ Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Enable
Bit I Bit I Bit I Bit I Bit I Bit I Bit I Bit I
Cell Cell Cell Cell Cell Cell Cell Cell

Address
2 bits

1

Cell

1

Cell

1

Cell

al

Cell

1

Cell

1

Cell

1

Cell

1

Cell

Cell Cell Cell Cell Cell Cell Cell Cell

More pointers

Memory Array

Memory Array

 Each row of data is called a word. Most memories use 8-bit word, a byte.

Memory Array

 Each row of data is called a word. Most memories use 8-bit word, a byte.

. 2N_-word X M-bit memory array. [V is the size of an address. M is the smallest
addressable unit.

Memory Array

 Each row of data is called a word. Most memories use 8-bit word, a byte.

. 2N_-word X M-bit memory array. [V is the size of an address. M is the smallest
addressable unit.

 An address causes the enable lines of all bit cells in a row to turn on, and their
contents are read/written simultaneously.

Memory Array

 Each row of data is called a word. Most memories use 8-bit word, a byte.

. 2N_-word X M-bit memory array. [V is the size of an address. M is the smallest
addressable unit.

 An address causes the enable lines of all bit cells in a row to turn on, and their
contents are read/written simultaneously.

* On modern machines, M is almost always 8.

Memory Array

 Each row of data is called a word. Most memories use 8-bit word, a byte.

. 2N_-word X M-bit memory array. [V is the size of an address. M is the smallest
addressable unit.

 An address causes the enable lines of all bit cells in a row to turn on, and their
contents are read/written simultaneously.

* On modern machines, M is almost always 8.

« What is NV, the size of a memory address?

Memory Array

 Each row of data is called a word. Most memories use 8-bit word, a byte.

. 2N_-word X M-bit memory array. [V is the size of an address. M is the smallest
addressable unit.

 An address causes the enable lines of all bit cells in a row to turn on, and their
contents are read/written simultaneously.

* On modern machines, M is almost always 8.

« What is NV, the size of a memory address?

e 64 on 64-bit machine, 32 on 32-bit machine.

Memory Array

Memory Array

e 232 4,294,967,296 = ~4.3 G of addressable rows.

Memory Array

e 232 4,294,967,296 = ~4.3 G of addressable rows.

e 4.2 gigabytes of addressable memory.

Memory Array

e 232 4,294,967,296 = ~4.3 G of addressable rows.

e 4.2 gigabytes of addressable memory.

* |n order to use beyond 4.2GB, memory addresses need to be bigger.

Memory Array

. D32 4.294 967,296 = ~4.3 G of addressable rows.
e 4.2 gigabytes of addressable memory.

* |n order to use beyond 4.2GB, memory addresses need to be bigger.

. 264 18,446,744,073,709,551,616 = 18 exabytes = ~4.2 million gigabytes

Endian

* We think of an integer as one atomic value:

Endian

* We think of an integer as one atomic value:
e nt x = 0x1AZB3C4D;

Endian

* We think of an integer as one atomic value:
e nt x = 0x1AZB3C4D;

* But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

Endian

* We think of an integer as one atomic value:
e nt x = 0x1AZB3C4D;

* But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

0 1 3

2

Endian

* We think of an integer as one atomic value:
e nt x = 0x1AZB3C4D;

* But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

Endian

* We think of an integer as one atomic value:
e nt x = 0x1AZB3C4D;

* But if an integer has 4 bytes and each byte is addressable, which of the 4

bytes is stored first?
Most significant

Endian

* We think of an integer as one atomic value:
e nt x = 0x1AZB3C4D;

* But if an integer has 4 bytes and each byte is addressable, which of the 4

bytes is stored first?
Most significant
Least significant

Endian

* We think of an integer as one atomic value:
e nt x = 0x1AZB3C4D;

* But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

0 1 2 3

: . Most significant
Least significant

Endian

* We think of an integer as one atomic value:
e nt x = 0x1AZB3C4D;

* But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

: . Most significant

0 1 2 3

byte first

Endian

* |Is my machine little-endian or big-endian?

Endian

* |Is my machine little-endian or big-endian?

e |Let's find out!

Endian

Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five

Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five

 But there are some advantages for little-endian:

Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five
 But there are some advantages for little-endian:

* comparing two numbers of different length (long and int e.qg.)

Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five
 But there are some advantages for little-endian:

* comparing two numbers of different length (long and int e.qg.)
e 4E3C2B1A

Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five
 But there are some advantages for little-endian:
* comparing two numbers of different length (long and int e.qg.)
e 4E3C2B1A
e 4E3CZB1A00000000

Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five
 But there are some advantages for little-endian:
* comparing two numbers of different length (long and int e.qg.)
e 4E3C2B1A
e 4E3CZB1A00000000

* addition, subtraction circuits work from low to high

Endian

* We usually write numbers in big-endian: 345 is three hundred and forty-five
 But there are some advantages for little-endian:
* comparing two numbers of different length (long and int e.qg.)
e 4E3C2B1A
e 4E3CZB1A00000000

* addition, subtraction circuits work from low to high

* elcC.

Endian

Does it matter?

Endian

Does it matter?

 Mostly we don't care. Unless you do memory trickery, variables work as
you would expect

Endian

Does it matter?

 Mostly we don't care. Unless you do memory trickery, variables work as
you would expect

» However, when we serialize data into byte sequences, you need to pay
extra attention:

Endian

Does it matter?

 Mostly we don't care. Unless you do memory trickery, variables work as
you would expect

» However, when we serialize data into byte sequences, you need to pay
extra attention:

* Writing a number to a file

Endian

Does it matter?

 Mostly we don't care. Unless you do memory trickery, variables work as
you would expect

» However, when we serialize data into byte sequences, you need to pay
extra attention:

* Writing a number to a file

 Sending a number over a network

Endian

Does it matter?

 Mostly we don't care. Unless you do memory trickery, variables work as
you would expect

» However, when we serialize data into byte sequences, you need to pay
extra attention:

* Writing a number to a file
 Sending a number over a network

* You and the reader must agree on byte order

Endian

Does it matter?

 Mostly we don't care. Unless you do memory trickery, variables work as
you would expect

» However, when we serialize data into byte sequences, you need to pay
extra attention:

* Writing a number to a file
 Sending a number over a network
* You and the reader must agree on byte order

* For this purpose, network byte order is defined for TCP/IP

Pointers

Review

int x = 20;

int arr[4] = { 0 };
int *ptr;

int **ptr ptr;

100

int

20

128 int* ptr
?7?
136 int** ptr ptr

104

int[]

arr

?7?

Pointers

Review

int x = 20;

int arr[4] = { 0 };
int *ptr;

int **ptr ptr;

ptr = &X;

100

int

20

128 int¥* ptr
?7?
136 int** ptr ptr

104

int[]

arr

?7?

Pointers
Review

int x = 20; : :
2
int arr[4] = { 0 }; 128 1nt//////;;:f-\\\\\tloo int x

int *ptr; 100 20
int **ptr ptr;

*ptr = &X;

136 int** ptr ptr 104 int|[] arr
?7 0
0
0
0

Pointers
Review

int x = 20; : :
*
int arr[4] = { 0 }; 128 1nt//////;;;f-\\\\\tloo int x

int *ptr; 100 20
int **ptr ptr;

ptr = &X;
o printf ("sd\n", *ptr);

136 int** ptr ptr 104 int|[] arr
?7 0
0
0
0

Pointers
Review

int x = 20; : :
*
int arr[4] = { 0 }; 128 1nt//////;;;f-\\\\\tloo int x

int *ptr; 100 20
int **ptr ptr;

ptr = &x;
o printf ("sd\n", *ptr); <-- 20
136 int** ptr ptr 104 int|[] arr
?7? 0
0
0
0

Pointers

Review

int x = 20; : :
2
int arr[4] = { 0 }; 128 1nt//////;;:f-\\\\\tloo int x

int *ptr; 100 20
int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);

*ptr_ptr = &ptr; 136 int** ptr ptr 104 int[] arr
?7 0
0
0
0

Pointers

Review

int x = 20; : :
2
int arr[4] = { 0 }; 128 1nt//////;;:f-\\\\\tloo int x

int *ptr; 100 20
int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);

*ptr_ptr = &ptr; 136 int** ptr ptr 104 int[] arr
128 0
0
0
0

Pointers

Review

int x = 20;

int arr[4] = { 0 };
int *ptr;

int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);

100

int

20

128 int¥* ptr
100
136 int** ptr ptr

104

int[]

arr

128

Pointers

Review

}nt x = 20; 128 int¥* ptr 100 int X
int arr[4] = { 0 };

int *ptr; 100 20

int **ptr ptr;

ptr = &x;
printf ("$d\n", *ptr);
ptr ptr = &ptr; 136 int** ptr ptr 104 int[] arr
*printf("%p\n", *ptr ptr); <-- 100
128 0
0
0

Pointers

Review

int x = 20; . :
12 * 1

int arr[4] = { 0 1, 8 int ptr 00 int X

int *ptr; 100 20

int **ptr ptr;

ptr = &x;
printf ("$d\n", *ptr);
ptr ptr = &ptr; 136 int** ptr ptr 104 int[] arr
printf ("sp\n", *ptr ptr);
*printf ("sd\n", **ptr ptr); 128 0
0
0
0

Pointers

Review

int x = 20; . :
12 * 1

int arr[4] = { 0 1, 8 int ptr 00 int X

int *ptr; 100 20

int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);
ptr ptr = &ptr; 136 int** ptr ptr 104 int[] arr
printf ("sp\n", *ptr ptr);
o printf ("sd\n", **ptr_ptr); <-- 20 128 0
0
0
0

Pointers

Review

int x = 20; . :
12 * 1

int arr[4] = { 0 1, 8 int ptr 00 int X

int *ptr; 100 20

int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);

ptr ptr = &ptr; 136 int** ptr ptr 104 int[] arr
printf ("sp\n", *ptr ptr);
printf ("sd\n", **ptr ptr); 128 0
* — .
* ptr 25; 0
0
0

Pointers

Review

int x = 20; . :
12 * 1

int arr[4] = { 0 1, 8 int ptr 00 int X

int *ptr; 100 25

int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);

ptr ptr = &ptr; 136 int** ptr ptr 104 int[] arr
printf ("sp\n", *ptr ptr);
printf ("sd\n", **ptr ptr); 128 0
**ptr = 25; 0
0
0

Pointers

Review

int x = 20; . :
12 * 1

int arr[4] = { 0 1, 8 int ptr 00 int X

int *ptr; 100 25

int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);

ptr ptr = &ptr; 136 int** ptr ptr 104 int[] arr
printf ("sp\n", *ptr ptr);
printf ("sd\n", **ptr ptr); 128 0

ptr 0 0

*
*ptr = garr[0];

Pointers

Review

int x = 20; . :
12 * 1

int arr[4] = { 0 1, 8 int ptr 00 int X

int *ptr; 104 25

int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);

ptr ptr = &ptr; 136 int** ptr ptr 104 int[] arr
printf ("sp\n", *ptr ptr);
printf ("sd\n", **ptr ptr); 128 0

ptr 0 0

*
*ptr = garr[0];

Pointers

Review

int x = 20; . :
12 * 1

int arr[4] = { 0 1, 8 int ptr 00 int X

int *ptr; 104 25

int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);

ptr ptr = &ptr; 136 int** ptr ptr 104 int[] arr

printf ("sp\n", *ptr ptr);

printf ("sd\n", **ptr ptr); 128 0

*ptr = 25; 0

ptr = &arr[0];

**ptr = 25; -]

0
0

Pointers

Review

int x = 20; . :
12 * 1

int arr[4] = { 0 1, 8 int ptr 00 int X

int *ptr; 104 25

int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);

ptr ptr = &ptr; 136 int** ptr ptr 104 int[] arr
printf ("$p\n", *ptr ptr);
printf ("sd\n", **ptr ptr); 128 25
*ptr = 25;
0
ptr = &arr[0];
**ptr = 25; -
0
0

Pointers

Review

int x = 20; . :
12 * 1

int arr[4] = { 0 1, 8 int ptr 00 int X

int *ptr; 104 25

int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);

ptr ptr = &ptr; 136 int** ptr ptr 104 int[] arr
printf ("sp\n", *ptr ptr);
printf ("sd\n", **ptr ptr); 128 25
*ptr = 25;
0
ptr = &arr[0];
*ptr = 255
0
**ptr_ptr = &arrl[l];
0

Pointers

Review

int x = 20; . :
12 * 1
int arr[4] = { 0 1, 8 int ptr 00 int X

int *ptr; 108
int **ptr ptr;

25

ptr = &x;
printf ("sd\n", *ptr);

ptr ptr = &ptr; 136 int** ptr ptr
printf ("$p\n", *ptr ptr);
printf ("sd\n", **ptr ptr); 128
*ptr = 25;
0
ptr = &arr[0];
*ptr = 255

**ptr ptr = &arr[1l];

Pointers

Review

int x = 20;

int arr[4] = { 0 };
int *ptr;

int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);

ptr ptr &ptr;
printf ("$p\n", *ptr ptr);

printf ("%d\n", **ptr ptr);

*ptr = 255
ptr = &arr[0];
*ptr = 25;

100

int

128 int¥* ptr
108
136 int** ptr ptr

25

128

Pointers

Review

int x = 20;

int arr[4] = { 0 };
int *ptr;

int **ptr ptr;

ptr = &x;
printf ("sd\n", *ptr);

ptr ptr &ptr;
printf ("$p\n", *ptr ptr);

printf ("%d\n", **ptr ptr);

*ptr = 255
ptr = &arr[0];
*ptr = 25;

100

int

128 int¥* ptr
108
136 int** ptr ptr

25

128

30

Pointers

Review

int x = 20; . :
12 * 1
int arr[4] = { 0 1, 8 int ptr 00 int X

int *ptr; 108
int **ptr ptr;

25

ptr = &x;
printf ("sd\n", *ptr);

ptr ptr = &ptr; 136 int** ptr ptr
printf ("sp\n", *ptr ptr);
printf ("sd\n", **ptr ptr); 128
* — .
ptr = 25;
ptr = &arr[0]; 30
*ptr = 255

*ptr ptr = &arr[l];
ptr = 30; 0

*
=P ptr(l] = 40;

Pointers

Review

int x = 20; . :
12 * 1
int arr[4] = { 0 1, 8 int ptr 00 int X

int *ptr; 108
int **ptr ptr;

25

ptr = &x;
printf ("sd\n", *ptr);

ptr ptr = &ptr; 136 int** ptr ptr
printf ("sp\n", *ptr ptr);
printf ("sd\n", **ptr ptr); 128
* — .
ptr = 25;
ptr = &arr[0]; 30
*ptr = 255

40

*ptr ptr = &arr[l];
ptr = 30; 0

*
P otr(l] = 40;

Pointers .
type : 1nt

Review value: 25
100 int

] ;

I&xl
type : 1nt *
value: 100

Pointers .
type : 1nt

Review value: 25
100 int

] ;

&X
I_____I 108 int *

type : 1nt * 100

value: 100

Pointers

Review

type
value:

L

type
value:

int
25

int *
100

100

int

25

108

int *

100

type : 1nt *
value: 100

type : 1nt
value: 25

Pointers

Review

type : 1nt
value: 25

o

type : 1nt
value: 100

int
100

type : 1nt
value: 108

* %

type
value:

int *
100

type
value:

int
25

100

int

25

108

int *

100

Pointers

Review

type : 1nt
value: 25

o

type : 1nt
value: 100

int
100

type : 1nt
value: 108

* %

type : 1nt
value: 25

int

I—-I 100

25

Bl

108

int *

100

error
type : 1nt *
value: 100

type : 1nt
value: 25

Pointers

How about returning an array?

int *make 10 of (1nt n)

{

1nt numbers/|],
for (int 1 = 0; 1 < ;o1++) |
numbers|[i1] = n;

J

return numbers;

int main ()

{

int *ns = make 10 of (42);

return ;

make 10 of

mailin

1: ?°

numbers|[9] :

numbers|[8] :

numbers|[7] :

numbers|[6] :

numbers|[5] :

numbers|[4] :

numbers|[3]:

numbers|[2]:

numbers|[1l]:

numbers[0]:

ns: ?°%?

Pointers

How about returning an array?

int *make 10 of (1nt n)

{

1nt numbers/|],
for (int 1 = 0; 1 < ;o1++) |
numbers|[i1] = n;

J

return numbers;

int main ()

{

int *ns = make 10 of (42);

return ;

make 10 of

mailin

i: 10
numbers[9]: 42
numbers[8] : 42
numbers[7]: 42
numbers[6]: 42
numbers[5]: 42
numbers[4]: 42
numbers[3]: 42
numbers[2]: 42
numbers[1l]: 42
numbers[0] : 42

ns: ?7?

Pointers

How about returning an array?

int *make 10 of (1nt n)

{

1nt numbers/|],
for (int 1 = 0; 1 < ;o1++) |
numbers|[i1] = n;

J

return numbers;

int main ()

{

int *ns = make 10 of (42);

return ;

make 10 of

mailin

i: 10
numbers[9]: 42
numbers[8] : 42
numbers[7]: 42
numbers[6]: 42
numbers[5]: 42
numbers[4]: 42
numbers[3]: 42
numbers[2]: 42
numbers[1l]: 42
numbers[0] : 42

ns: &numbers

Pointers

How about returning an array?

int *make 10 of (1nt n)

{

1nt numbers/|],
for (int 1 = 0; 1 < ;o1++) |
numbers|[i1] = n;

J

return numbers;

int main ()

{

int *ns = make 10 of (42);

return ;

mailin

ns.

&numbers

Pointers

How about returning an array?

int *make 10 of (int n) numbers IS recycled after returning
{
int numbers[10];
for (1int 1 = 0; 1 < ;o1++) |
numbers[1] = n;

J

return numbers;

int main ()

{

int *ns = make 10 of (42);

return O;: s e >
} : ns: &numbers

maln

Pointers

How about returning an array?

int *make 10 of (int n) numbers IS recycled after returning
{
int numbers[10]; ns becomes a pointer to invalid/
for (int i = 0; i < 10; i++) { non-existent/dead data.
numbers[1i] = n;

J

return numbers;

int main ()

{

int *ns = make 10 of (42);

return O;: s e >
} : ns: &numbers

maln

Pointers

How about returning an array?

?nt *make_10_of (int n) numbers IS recycled after returning
int numbers[10]; « ns becomes a pointer to invalid/
for (int i = 0; i < 10; i++) | non-existent/dead data.

numbers|[i1] = n; _ _
) We call ns a dangling pointer

return numbers;

int main ()

{

int *ns = make 10 of (42);

return O; e e >
} : ns: &numbers

maln

