Final Review

Quiz time

The quiz will be held on **Monday 7/14/2025 from 6-8pm** in **Ryerson 251**. The exam period will be **120 minutes** long. You can bring one hand-written (not printed) sheet as reference. Additionally, you can have a hand held, non programmable calculator. All other resources, including books, printed notes, electronic access or communication is not allowed and can result in a zero on the exam.

Here is a list of topics:

- 1. Variables
 - int
 - signed vs unsigned
 - char
 - float
- 2. Strings
 - Working with strings
 - · Reading, printing and manipulation
- 3. Converting to different bases
 - Decimal
 - Binary
 - Hexadecimal
 - Octal
- 4. Floating point arithmetic
 - Exponent
 - Mantissa
 - Being able to translate a floating point to decimal
- 5. Bit packing
 - Masking
 - Setting bits
 - Retrieving information from binary

- Resetting fields
- 6. Command line arguments
- 7. Pointers
 - Dereference operator *
 - Address operator &
 - Pointer arithmetic
 - Deep vs shallow copy
- 8. Memory Management
 - Stack vs heap
 - Automatic vs manual management
 - Memory leaks

PROBLEM 1 (Bits (8 points)).	1. (2 points) What is the smallest int8_t number?
2. (2 points) What is the la	rgest positive subnormal float?
3. (2 points) Write 1001001	1, which is a <i>signed</i> 8-bit binary number, in decimal
4. (2 points) Write 1001001	1, which is an <i>unsigned</i> 8-bit binary number, in decimal

PROBLEM 2 (Mystery (18 points)). You just started working for a company that is implementing a set of procedures to operate on bits, but the code base is full of undocumented C code with magic numbers and bitwise operations aplenty. To do anything, you must first understand what the functions are currently doing.

First, you discover the following function, which takes a 16-bit signed integer as input and returns a 16-bit signed integer. *Hint: ^ is the XOR operator.*

```
1 int8_t mystery1(int8_t n)
2 {
3     int8_t m = n >> 7;
4     return (n + m) ^ m;
5 }
```

(a) (5 points) For each of the following values of n, calculate the intermediate values.

	n	n	m	(n + m) ~ m	(n + m) ^ m	
	(Decimal) (Binary)		(Binary)	(Binary)	(Decimal)	
Ī	- 7					

(b) (3 + 2 points) Briefly explain in plain language what mystery1 does, and explain why this function

Then, you encounter the following function, mystery2.

```
1  uint32_t mystery2(uint32_t n, int i, uint8_t b)
2  {
3          uint32_t m = 0xFF << (i << 3);
4          n &= ~m;
5          n |= b << (i << 3);
6          return n;
7  }</pre>
```

(c) (3 points) For each of the following lists of arguments, calculate what mystery2 returns.

n	i	Ъ	mystery2(n, i, b)
(Hexadecimal)	(Decimal)	(Hexadecimal)	(Hexadecimal)
0x1A2B3C4D	0	OxFF	
0x1A2B3C4D	2	OxAB	

(d) (5 points) What does myste	ery2 do?
--------------------------------	----------

PROBLEM 3 (Bit-packing (15 points)). Consider the following 8-bit encoding of a student information, from the *highest*¹ bit to the *lowest* bit:

- A 2-bit unsigned number for the student's year (o for first year, up to 3 for fourth year) in the program;
- A bit indicates whether a student is a transfer student (1 for transfer student);
- A bit indicates whether a student lives on campus (1 for on-campus); and
- A 4-bit unsigned number indicates the student's birth month (o for January, up to 11 for December).

(.	4 po	ints)	Writ	e an	8-bit	num	ıber i	n bir	nary characterizing the following student a third-year, non-transfer
s	tude	ent, li	iving	on c	amp	us, b	orn i	n Jul	y.
Γ									

(6 points) Write a C function that takes an 8-bit number in the encoded student information described above, and returns non-zero if and only if the student is a *transfer* student who lives *on campus*.

int is_transfer_on_campus(uint8_t student){

}

¹Corresponding to 2⁷

example, the population of the n of a given 64-bit number.	umber 7 (0000 0111) is 3	3. Write a C function th	nat computes the population
<pre>int popcount(uint64_t n){</pre>			
}			

(i) (5 points) The number of 1-bits in a binary number is also known as the population of the number. For

the return value should be string "J.u.l.y.". Note that there is no restrictions on how long the	e input
string is. You can assume that the argument is not NULL.	
<pre>char* dots(char* str){</pre>	
}	

PROBLEM 4 (Writing C (10 points)). (10 points) Write a function that takes a C string and returns a fresh heap-allocated string with a period inserted *after* every character. For example, if the string given is "July",