
CMSC 14300 - Summer 2025 — Konstantinos Ameranis

due 8/4/2025 via Gradescope H5.

Problem 1 (Bad Hash functions) Catherine (our grader) tried suggesting some alternative hash functions that
should help with performance. The first one is f1(k) = 1, which she claims is better since it is super fast.

(a) (2 points) Using f1 turns the hash table into which known data structure?

(b) (2 points) The second one she suggested was

uint64_t string_hash(void *key) {

char *str = key;

uint64_t hash = 0;

int c;

while ((c = *str++))

hash = c + (hash << 6)

return hash;

}

This one is a variation on the sdbm, but performs a single addition instead of three.

Given the string ”information” construct an English word s such that f2(”information”) == f2(s). Is there
a simple way to construct a collision for any input?

(c) (2 points) Another way that Catherine is trying to help is by trying to make sure the hash function is truly
random. Her proposal is f3(k) = hash(k)randint(2 ∗ ∗64).
Why is this not a valid hash function?

https://canvas.uchicago.edu/courses/64693
https://www.gradescope.com/courses/1007022


Problem 2 (Timing comparisons (4 points)) Compare the running time of groups using a hash table and a
binary search tree, how long does it take to group the largest input in each case?
Try:

/usr/bin/time ./groups -t tests/large.txt > /dev/null

/usr/bin/time ./groups -m tests/large.txt > /dev/null

There are primarily two parts in the groups program:

1. insert all lines into the dictionary, and

2. visit all key-value pairs in sorted order

Which implementation is better at accomplishing Step 1? Which implementation is better at Step 2?

Problem 3 How many hours did you spend for this assignment?

Problem 4 What is the most difficult aspect of this assignment, if any?

Problem 5 Document your collaboration here.

H5-2


