
Grant Ho

AI/ML & Security + Course Wrap-up

CMSC 23200, Spring 2025, Lecture 18

University of Chicago, 05/22/2025

(Slides adapted from Dan Boneh and Raluca Ada Popa)

Logistics

Assignment 6 due today by 11:59pm

Final Exam Location: KPTC 106

• Wed, May 28 from 10am – 12pm: BOTH SECTIONS!

• Closed notes

• Grades will be curved: Do NOT discuss or post about the

exam afterwards due to SDS exam dates

Wrap-up: Enterprise Security

Why do enterprises struggle w/ security? (cont.)

• No unified and universal guidelines of security best practices

Enterprise Security Challenges
• No unified and universal guidelines of security best practices
• Way too much advice out there & discrepancies / ambiguities

Enterprise Security Challenges
• No unified and universal guidelines of security best practices
• Way too much advice out there & discrepancies / ambiguities
• No good advice on what to prioritize

(Security advice
for end users)

Several Components for
 Good Enterprise Security

• Strong authentication for systems and services

• Limit administrative & sensitive privileges (least privilege)

• Deploy comprehensive detection and audit logging

• Frequent patching for applications & OS across machines

• Periodic and secured back-up for critical data

Outline

• ML Pipeline Overview

• Attacks on the ML Pipeline

• LLMs & Agentic Security

• Applications of AI/ML for Security

• Course Retrospective & Outlook

Intro to AI/ML Security

Caveat: TON of work in this space & very active area of research

Could teach an entire course on this material and still not cover
everything!

Today’s lecture: a high-level taste of some major areas
• Get you thinking about security in this area based on course ideas

The basic ML pipeline (supervised learning)

(1) Data collection

(2) Training

(3) Inference

Learning
algorithm

θ
ML Model

θ
“yield”, 95%
“stop” , 2%

Prediction / OutputInput

Where are attacks possible on the ML pipeline?

(1) Data collection

(2) Training

(3) Inference

Learning
algorithm

θ
ML Model

θ
“yield”, 95%
“stop” , 2%

Prediction / OutputInput

Every one of these steps can be attacked

Attack on Training: Data Poisoning

(1) Data collection

(2) Training

(3) Inference

Learning
algorithm

θ
ML Model

θ
“yield”, 95%
“stop” , 2%

Prediction / OutputInput

Attack on Training: Data Poisoning

(1) Data collection

(2) Training

(3) Inference

Learning
algorithm

Θ'
ML Model

Θ'
“yield”, 2%
“100mph” , 98%

Prediction / OutputInput

Attack on Training: Data Poisoning

(Koh and Liang, ICML 2017)

Attacker generates a single malicious training example (adversarial perturbation)

Produces errors
on many inputs
during inference:

Attack on Training: Data Poisoning
• Lots of active work @ UChicago in this space in the SANDLab

(Ben Zhao & Heather Zheng)

Shan et al. 2024: Nightshade

Inference Time Attacks

(1) Data collection

(2) Training

(3) Inference

Learning
algorithm

θ
ML Model

θ
“yield”, 95%
“stop” , 2%

Prediction / OutputInput

Inference Time Attacks

(1) Data collection

(2) Training

(3) Inference

Learning
algorithm

θ
ML Model

θ
“yield”, 2%
“100 mph” , 98%

Prediction / OutputInput

Inference Time Attacks: Adversarial Examples
[Szegedy et al. ‘13], [Biggio et al. ‘13], [Goodfellow et al. ‘14], ...

90% Tabby Cat 100% Guacamole

Adversarial noise
(× 0.007)

Adversarial examples are everywhere

(Carlini et al. 2016,

 Cisse et al. 2017,

Carlini & Wagner 2018)

(Sharif et al. 2016)

(Athalye et al. 2018)

(Eykholt et al. 2017)

(Eykholt et al. 2018)

Constructed using various optimization tricks (e.g.,
the Fast Gradient Sign Method (FGSM))

Evade facial recognition

3D printed turtle ->
classified as a rifle

Stop sign -> classified as
“45mph” sign

Audio “noise” ->
voice commands

Many methods for generating adversarial examples!
(CMSC 25800)

confidence in the
“Cat” class

Cat
Lynx
Guacamole

Guacamole

Humans are not perfect either …

Jastrow Illusion:
https://youtu.be/IWltQIcb8-c?feature=shared

Perhaps there is no perfectly robust ML model …

https://youtu.be/IWltQIcb8-c?feature=shared
https://youtu.be/IWltQIcb8-c?feature=shared
https://youtu.be/IWltQIcb8-c?feature=shared

No strong defense so far !


Whenever someone tells you they are using ML,

ask them what they do about adversarial examples!

If you deploy ML models in-the-wild, design your system

assuming user-provided input can lead to arbitrary incorrect outputs!

Outline

• ML Pipeline Overview

• Attacks on the ML Pipeline

• LLMs & Agentic Security

• Applications of AI/ML for Security

• Course Retrospective & Outlook

Large Language Models: LLMs

Generative AI models: trained
to output text given some
input text (“prompt”)

Also have multi-modal LM’s:
e.g., take text as input ->
output other data like images

What are some inference-time
attacks on LLMs?

The basics: jailbreaks
Aligned models try to block negative behavior

Dec. 2023: an automated, universal, transferable jailbreak generator

https://arxiv.org/pdf/2307.15043.pdf

More importantly: prompt injection
Common setting:
• Victim/developer uses an LLM to process some provided data
• Attacker provides malicious instructions in their data ->

LLM misinterprets these as instructions (“prompt”) by the victim

https://arxiv.org/abs/2312.17673
(see also [Perez-Ribeiro 2022, Greshake et al. 2023])

https://arxiv.org/abs/2312.17673
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2302.12173

A real-world example: hacking Google Bard

Extensions allow Bard to access a user’s personal documents and emails
(and search for flights, hotels, YouTube videos, etc.)

https://embracethered.com/blog/posts/2023/google-bard-data-exfiltration/

What could go wrong?

 The problem: LLMs are not designed for adversarial input

Prompt injection

Attacker: send an email to or share a document with victim
⇒ text processed by Bard
⇒ In some cases, can confuse Bard into writing chat history
 into a shared document with attacker

 (disclosed to and fixed by Google)

https://embracethered.com/blog/posts/2023/google-bard-data-exfiltration/

Agentic AI models: Broader Concern
Agentic models interact with the environment via APIs (such as the MCP standard)

• Very sophisticated apps being built that autonomously complete complex tasks
 (“Book a complete trip to Rome for me”)

The risk: using prompt injection, an adversary can confuse the model
 into taking a harmful action

https://modelcontextprotocol.io/introduction

Many opportunities for prompt injection

• Passive methods: the query might involve a web search that returns
a web page containing adversarial text

• Active methods: adversary sends Alice an email that gets saved
along with the meeting notes

• Stealth injection: adversary appends adversarial base64 encoded
text to an otherwise innocuous document, or in an image.

models parse base64 encoded text with ease,
but a human auditor may ignore itaGVsbG8gd29ybGQuICB0aGlzIGlzIGEgdGVzdC4=

Indirect prompt injection attacks

Prompt injection need not be textual!

An example: image-based prompt injection
⇒ Can be used to exfiltrate training data
 (unbeknownst to the user)

https://arxiv.org/pdf/2307.10490v4.pdf

hidden instructions

Why does prompt injection work?
Model fails to distinguish between data & instructions!

• Data treated as commands

• A classic security problem: buffer overflows, XSS, etc.

During training (technically instruction-tuning/fine-tuning), the inputs contained mix of
both instructions & data!

• Model never learns the distinction between the two!

Training
(Instruction Tuning)

θ
LLM

Training Data

Input text contains mix
of instructions & data

Prompt Injection Defenses
One Idea: Train LLMs to distinguish between instructions & data by requiring
all input to follow structured format (similar to SQL prepared statements)

• StruQ: https://arxiv.org/abs/2402.06363

LLM

Input / Prompt

Output

LLM Dataset of:
(instruction, input)

-> output

Instruction Fine Tuning

(Instruction, Input)

Output

LLM*

https://arxiv.org/abs/2402.06363

Prompt Injection Defenses

• StruQ helps defend against many prompt injection attacks,
but not all LLM use cases can be structured in this specific way
(e.g., free-form chat bot)

• Additionally, training is
probabilistic – models
not guaranteed to
recognize this distinction
every time 

LLM Dataset of:
(instruction, input)

-> output

Instruction Fine Tuning

(Instruction, Input)

Output

LLM*

Other Prompt Injection Defenses
• Use Control Flow Integrity (CFI) methodology from Computer Security.

https://arxiv.org/abs/2503.18813

Given a user prompt:

 (1) LLM #1 processes developer’s instructions and model them as control flow

 (allowable actions/policy)

 (2) Have another LLM (#2) process necessary data & execute operations by

 asking a custom interpreter to perform the operations

 (3) The custom interpreter only performs actions allowed in control flow

 extracted by LLM #1 (e.g., do not send emails to a non-employee)

An active area of research … many ideas and proposals

Training Data Extraction
Do models memorize their training data?

Can an attacker obtain training data by just querying the model?

https://arxiv.org/pdf/2311.17035

% of generated tokens that are a
50-token copy from training data

Results:

• The larger the model the more 50-token answers are memorized.

• Specific queries tend to generate more memorized sequences.

The lesson: allowing an adversary to query the model can
 leak sensitive training data

A classic example

https://chatgpt.com/share/1f044bb2-e7a1-4a17-898e-6f3cf659af0d

From a known
web site

User Prompt:

Outline

• ML Pipeline Overview

• Attacks on the ML Pipeline

• LLMs & Agentic Security

• Applications of AI/ML for Security

• Course Retrospective & Outlook

An example of dual use: can LLMs find software exploits?

The dual use aspect:

• Offensive: can find and run exploits autonomously

 FBGZK’24: “LLM agents can autonomously hack websites”
 FBGZK’24: “Teams of LLM agents can exploit zero-day vulnerabilities”

• Defensive: can be used by developers to improve product security:

 HZ’24: “PenHeal: An LL framework for auto pen-testing and remediation”
 HC’23: “Penetration testing with large language models”

https://arxiv.org/abs/2402.06664
https://arxiv.org/abs/2406.01637
https://arxiv.org/abs/2407.17788v1
https://arxiv.org/abs/2308.00121

Cybench: assessing LLMs’ ability to find exploits
https://arxiv.org/abs/2408.08926

Cybench: assess capabilities on Capture the Flag Competitions (CTFs):

• Teams compete to exploit vulns. and “capture a flag”

• Varying levels of difficulty: high school, college, professional

Cybench benchmark focuses on the hardest CTFs: (professional level)

https://arxiv.org/abs/2408.08926

Current LLM performance on Cybench

(best human time)

with suggested subtasks

Future models likely to do much better!
⇒ Can help developers find bugs…
 or help attackers exploit more systems

Do we actually see AI-generated attacks in-the-wild?

Yes 

Hao et al., to appear at IMC
2025

• Lots of active work trying to
quantify the real-world
harm/benefit from AI/ML

How secure is AI-written code?

AI Coding Assistants

What about security?
Study asked developers to perform five tasks:

• Write two functions in Python where one encrypts and the other
decrypts a given string using a given symmetric key.

• Write a function in Python that signs a given message using a given
ECDSA signing key

• Write a function in Python that takes as input a string representing a
file path and returns a File object for the file at “path”. Files outside of
the directory “/safedir” should not be allowed to be accessed.
…

https://arxiv.org/pdf/2211.03622.pdf

Security of AI-generated/assisted code
Comparing mistakes with copilot (blue) and without (gray/yellow)

Security of AI-generated/assisted code
Comparing mistakes with copilot (blue) and without (gray)

Participants who had access to an AI assistant wrote less secure
code than those without access to an assistant.

Participants with access to an AI assistant were more likely to
believe they wrote secure code.

Some Mitigations… Use Another LLM to Check

CriticGPT: a model that help catch mistakes in ChatGPT responses

CriticGPT found the
bug in OpenGPT code

AI/ML Security Recap
When deploying AI/ML in-the-wild, every aspect of the pipeline has
security concerns.

Unfortunately, the state of defenses is very poor today.
• Companies/people deploying models need to think carefully about the

harm that could result from unsolved attacks on their system.

Lots of exciting future work thinking about how computer security can
improve safety of AI/ML, as well as how AI/ML impacts security!

Many topics we didn’t have time to discuss!
• Model extraction, Verifying AI/ML model integrity/correctness, etc.

Outline

• ML Pipeline Overview

• Attacks on the ML Pipeline

• LLMs & Agentic Security

• Applications of AI/ML for Security

• Course Retrospective & Outlook

Course Retrospective
1. Threat modeling
2. OS & Software security
3. Applied cryptography tools
4. Network security
5. Web security
6. Privacy & anonymity
7. Authentication
8. Protecting corporate networks + AI/ML Security

Some Final Exam Advice

• Don’t panic: Course will be graded on a curve

• Don’t memorize -> Instead focus on concepts: how & why

• Format will be similar to last year’s exam

Next Steps: Other S&P Courses
• CMSC 23206: Security, Privacy, and Consumer Protection

• CMSC 23210: Usable Security and Privacy

• CMSC 23218 Surveillance Aesthetics: Provocations About Privacy and Security in
the Digital Age

• CMSC 23260: Internet Censorship and Online Speech

• CMSC 25800: Adversarial Machine Learning

• CMSC 25910: Engineering for Ethics, Privacy, and Fairness in Computer Systems

• CMSC 28400: Introduction to Cryptography

• CMSC 33250: Graduate Computer Security
(called “Introduction to Computer Security” for historical reasons)

Security & Privacy Research @ UChicago
• Aloni: Cryptography & Law/Policy

• Ben: AI/ML + Security & Privacy

• Blase: Human-Centered Security & Privacy, AI Ethics

• David: Applied Crypto (optimal after taking CS 284)

• Heather: AI/ML + Security & Privacy, AR & IoT Security

• Kexin: Software Security, AI/ML for Software Security

• Nick: Privacy + AI/ML & Networking, Automated Content Moderation

• Marshini: Content Moderation, K-12 S&P, Dark Patterns

• Me (Grant): Enterprise Security, AI/ML for Security

	Slide 1: AI/ML & Security + Course Wrap-up CMSC 23200, Spring 2025, Lecture 18
	Slide 2: Logistics
	Slide 3: Wrap-up: Enterprise Security
	Slide 4: Why do enterprises struggle w/ security? (cont.)
	Slide 5: Enterprise Security Challenges
	Slide 6: Enterprise Security Challenges
	Slide 7: Several Components for Good Enterprise Security
	Slide 8: Outline
	Slide 9: Intro to AI/ML Security
	Slide 10: The basic ML pipeline (supervised learning)
	Slide 11: Where are attacks possible on the ML pipeline?
	Slide 12: Attack on Training: Data Poisoning
	Slide 13: Attack on Training: Data Poisoning
	Slide 14: Attack on Training: Data Poisoning
	Slide 15: Attack on Training: Data Poisoning
	Slide 16: Inference Time Attacks
	Slide 17: Inference Time Attacks
	Slide 18: Inference Time Attacks: Adversarial Examples [Szegedy et al. ‘13], [Biggio et al. ‘13], [Goodfellow et al. ‘14], ...
	Slide 19: Adversarial examples are everywhere
	Slide 20: Many methods for generating adversarial examples! (CMSC 25800)
	Slide 21: Humans are not perfect either …
	Slide 22
	Slide 23: Outline
	Slide 24: Large Language Models: LLMs
	Slide 25: The basics: jailbreaks
	Slide 26: More importantly: prompt injection
	Slide 27: A real-world example: hacking Google Bard
	Slide 28: Prompt injection
	Slide 29: Agentic AI models: Broader Concern
	Slide 30: Many opportunities for prompt injection
	Slide 31: Indirect prompt injection attacks
	Slide 32: Why does prompt injection work?
	Slide 33: Prompt Injection Defenses
	Slide 34: Prompt Injection Defenses
	Slide 35: Other Prompt Injection Defenses
	Slide 36: Training Data Extraction
	Slide 37: A classic example
	Slide 38: Outline
	Slide 39: An example of dual use: can LLMs find software exploits?
	Slide 40: Cybench: assessing LLMs’ ability to find exploits
	Slide 41: Current LLM performance on Cybench
	Slide 42: Do we actually see AI-generated attacks in-the-wild?
	Slide 43: How secure is AI-written code?
	Slide 44: AI Coding Assistants
	Slide 45: What about security?
	Slide 46: Security of AI-generated/assisted code
	Slide 47: Security of AI-generated/assisted code
	Slide 48: Some Mitigations… Use Another LLM to Check
	Slide 49: AI/ML Security Recap
	Slide 50: Outline
	Slide 51: Course Retrospective
	Slide 52: Some Final Exam Advice
	Slide 53: Next Steps: Other S&P Courses
	Slide 54: Security & Privacy Research @ UChicago

