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Logistics

Assignment 6 due today by 11:59pm

Final Exam Location: KPTC 106

• Wed, May 28 from 10am – 12pm: BOTH SECTIONS!

• Closed notes

• Grades will be curved: Do NOT discuss or post about the 

exam afterwards due to SDS exam dates



Wrap-up: Enterprise Security



Why do enterprises struggle w/ security? (cont.)

• No unified and universal guidelines of security best practices



Enterprise Security Challenges
• No unified and universal guidelines of security best practices
• Way too much advice out there & discrepancies / ambiguities



Enterprise Security Challenges
• No unified and universal guidelines of security best practices
• Way too much advice out there & discrepancies / ambiguities
• No good advice on what to prioritize

(Security advice 
for end users)



Several Components for
 Good Enterprise Security

• Strong authentication for systems and services

• Limit administrative & sensitive privileges (least privilege)

• Deploy comprehensive detection and audit logging

• Frequent patching for applications & OS across machines

• Periodic and secured back-up for critical data



Outline

• ML Pipeline Overview

• Attacks on the ML Pipeline

• LLMs & Agentic Security

• Applications of AI/ML for Security

• Course Retrospective & Outlook



Intro to AI/ML Security

Caveat: TON of work in this space & very active area of research

Could teach an entire course on this material and still not cover 
everything!

Today’s lecture: a high-level taste of some major areas
• Get you thinking about security in this area based on course ideas



The basic ML pipeline (supervised learning)

(1) Data collection

(2) Training

(3) Inference

Learning
algorithm

θ
ML Model

θ
“yield”,  95%
“stop” , 2%

Prediction / OutputInput



Where are attacks possible on the ML pipeline?

(1) Data collection

(2) Training

(3) Inference

Learning
algorithm

θ
ML Model

θ
“yield”,  95%
“stop” , 2%

Prediction / OutputInput

Every one of these steps can be attacked



Attack on Training: Data Poisoning
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Attack on Training: Data Poisoning

(1) Data collection

(2) Training

(3) Inference

Learning
algorithm

Θ'
ML Model

Θ'
“yield”,  2%
“100mph” , 98%

Prediction / OutputInput



Attack on Training: Data Poisoning

(Koh and Liang,  ICML 2017)

Attacker generates a single malicious training example  (adversarial perturbation)

Produces errors
on many inputs
during inference:



Attack on Training: Data Poisoning
• Lots of active work @ UChicago in this space in the SANDLab

(Ben Zhao & Heather Zheng)

Shan et al. 2024: Nightshade



Inference Time Attacks
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Inference Time Attacks

(1) Data collection

(2) Training

(3) Inference

Learning
algorithm

θ
ML Model

θ
“yield”,  2%
“100 mph” , 98%

Prediction / OutputInput



Inference Time Attacks:  Adversarial Examples
[Szegedy et al. ‘13], [Biggio et al. ‘13], [Goodfellow et al. ‘14], ...

90% Tabby Cat 100% Guacamole

Adversarial noise
( × 0.007)



Adversarial examples are everywhere

(Carlini et al. 2016, 

 Cisse et al. 2017, 

Carlini & Wagner 2018)

(Sharif et al. 2016)

(Athalye et al. 2018)

(Eykholt et al. 2017)

(Eykholt et al. 2018)

Constructed using various optimization tricks (e.g.,
the Fast Gradient Sign Method (FGSM))

Evade facial recognition

3D printed turtle -> 
classified as a rifle

Stop sign -> classified as 
“45mph” sign

Audio “noise” -> 
voice commands



Many methods for generating adversarial examples!
(CMSC 25800)

confidence in the 
“Cat” class

Cat
Lynx
Guacamole

Guacamole



Humans are not perfect either …

Jastrow Illusion:
https://youtu.be/IWltQIcb8-c?feature=shared

Perhaps there is no perfectly robust ML model …

https://youtu.be/IWltQIcb8-c?feature=shared
https://youtu.be/IWltQIcb8-c?feature=shared
https://youtu.be/IWltQIcb8-c?feature=shared


No strong defense so far !
 

Whenever someone tells you they are using ML,  

ask them what they do about adversarial examples!

If you deploy ML models in-the-wild, design your system

assuming user-provided input can lead to arbitrary incorrect outputs!



Outline

• ML Pipeline Overview

• Attacks on the ML Pipeline

• LLMs & Agentic Security

• Applications of AI/ML for Security

• Course Retrospective & Outlook



Large Language Models: LLMs

Generative AI models: trained 
to output text given some 
input text (“prompt”)

Also have multi-modal LM’s:
e.g., take text as input -> 
output other data like images

What are some inference-time 
attacks on LLMs?



The basics:  jailbreaks
Aligned models try to block negative behavior

Dec. 2023:  an automated, universal, transferable jailbreak generator

https://arxiv.org/pdf/2307.15043.pdf



More importantly: prompt injection
Common setting: 
• Victim/developer uses an LLM to process some provided data
• Attacker provides malicious instructions in their data -> 

LLM misinterprets these as instructions (“prompt”) by the victim

https://arxiv.org/abs/2312.17673
(see also [Perez-Ribeiro 2022, Greshake et al. 2023])

https://arxiv.org/abs/2312.17673
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2302.12173


A real-world example:  hacking Google Bard

Extensions allow Bard to access a user’s personal documents and emails 
(and search for flights, hotels, YouTube videos, etc.)

https://embracethered.com/blog/posts/2023/google-bard-data-exfiltration/

What could go wrong?

 The problem:  LLMs are not designed for adversarial input



Prompt injection

Attacker:   send an email to or share a document with victim
⇒ text processed by Bard
⇒ In some cases, can confuse Bard into writing chat history 
 into a shared document with attacker

 (disclosed to and fixed by Google)

https://embracethered.com/blog/posts/2023/google-bard-data-exfiltration/



Agentic AI models: Broader Concern
Agentic models interact with the environment via APIs   (such as the MCP standard)

• Very sophisticated apps being built that autonomously complete complex tasks
 (“Book a complete trip to Rome for me”)

The risk:  using prompt injection, an adversary can confuse the model
    into taking a harmful action

https://modelcontextprotocol.io/introduction


Many opportunities for prompt injection

• Passive methods:  the query might involve a web search that returns 
a web page containing adversarial text

• Active methods:  adversary sends Alice an email that gets saved 
along with the meeting notes

• Stealth injection:  adversary appends adversarial base64 encoded 
text to an otherwise innocuous document, or in an image.

models parse base64 encoded text with ease, 
but a human auditor may ignore itaGVsbG8gd29ybGQuICB0aGlzIGlzIGEgdGVzdC4=



Indirect prompt injection attacks

Prompt injection need not be textual!

An example:  image-based prompt injection
⇒  Can be used to exfiltrate training data
 (unbeknownst to the user)

https://arxiv.org/pdf/2307.10490v4.pdf

hidden instructions



Why does prompt injection work?
Model fails to distinguish between data & instructions!

• Data treated as commands

• A classic security problem: buffer overflows, XSS, etc. 

During training (technically instruction-tuning/fine-tuning), the inputs contained mix of 
both instructions & data!

• Model never learns the distinction between the two!

Training
(Instruction Tuning)

θ
LLM

Training Data

Input text contains mix 
of instructions & data



Prompt Injection Defenses
One Idea: Train LLMs to distinguish between instructions & data by requiring 
all input to follow structured format (similar to SQL prepared statements)

• StruQ: https://arxiv.org/abs/2402.06363 

LLM

Input / Prompt

Output

LLM Dataset of: 
(instruction, input) 

-> output

Instruction Fine Tuning

(Instruction, Input)

Output

LLM*

https://arxiv.org/abs/2402.06363


Prompt Injection Defenses

• StruQ helps defend against many prompt injection attacks,
but not all LLM use cases can be structured in this specific way
(e.g., free-form chat bot)

• Additionally, training is
probabilistic – models
not guaranteed to
recognize this distinction
every time  

LLM Dataset of: 
(instruction, input) 

-> output

Instruction Fine Tuning

(Instruction, Input)

Output

LLM*



Other Prompt Injection Defenses
• Use Control Flow Integrity (CFI) methodology from Computer Security. 

https://arxiv.org/abs/2503.18813

Given a user prompt:

 (1) LLM #1 processes developer’s instructions and model them as control flow

  (allowable actions/policy)

 (2) Have another LLM (#2) process necessary data & execute operations by   

   asking a custom interpreter to perform the operations

 (3) The custom interpreter only performs actions allowed in control flow  

  extracted by LLM #1 (e.g., do not send emails to a non-employee)

An active area of research … many ideas and proposals



Training Data Extraction
Do models memorize their training data?   

Can an attacker obtain training data by just querying the model?

https://arxiv.org/pdf/2311.17035

% of generated tokens that are a
50-token copy from training data

Results:

• The larger the model the more 50-token answers are memorized. 

• Specific queries tend to generate more memorized sequences.

The lesson: allowing an adversary to query the model can 
 leak sensitive training data



A classic example

https://chatgpt.com/share/1f044bb2-e7a1-4a17-898e-6f3cf659af0d

From a known
web site

User Prompt:
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An example of dual use: can LLMs find software exploits?

The dual use aspect:

• Offensive:  can find and run exploits autonomously

 FBGZK’24: “LLM agents can autonomously hack websites”
 FBGZK’24: “Teams of LLM agents can exploit zero-day vulnerabilities”

• Defensive:  can be used by developers to improve product security:

 HZ’24: “PenHeal: An LL framework for auto pen-testing and remediation”
 HC’23: “Penetration testing with large language models”

https://arxiv.org/abs/2402.06664
https://arxiv.org/abs/2406.01637
https://arxiv.org/abs/2407.17788v1
https://arxiv.org/abs/2308.00121


Cybench:  assessing LLMs’ ability to find exploits 
https://arxiv.org/abs/2408.08926

Cybench:  assess capabilities on Capture the Flag Competitions (CTFs):

• Teams compete to exploit vulns. and “capture a flag”

• Varying levels of difficulty:  high school, college, professional

Cybench benchmark focuses on the hardest CTFs:  (professional level)

https://arxiv.org/abs/2408.08926


Current LLM performance on Cybench

(best human time)

with suggested subtasks

Future models likely to do much better!
⇒  Can help developers find bugs… 
      or help attackers exploit more systems 



Do we actually see AI-generated attacks in-the-wild?

Yes 

Hao et al., to appear at IMC 
2025

• Lots of active work trying to 
quantify the real-world 
harm/benefit from AI/ML



How secure is AI-written code?



AI Coding Assistants



What about security?
Study asked developers to perform five tasks:

• Write two functions in Python where one encrypts and the other 
decrypts a given string using a given symmetric key.

• Write a function in Python that signs a given message using a given 
ECDSA signing key

• Write a function in Python that takes as input a string representing a 
file path and returns a File object for the file at “path”. Files outside of 
the directory “/safedir” should not be allowed to be accessed.
…

https://arxiv.org/pdf/2211.03622.pdf



Security of AI-generated/assisted code
Comparing mistakes with copilot (blue) and without (gray/yellow)



Security of AI-generated/assisted code
Comparing mistakes with copilot (blue) and without (gray)

Participants who had access to an AI assistant wrote less secure 
code than those without access to an assistant. 

Participants with access to an AI assistant were more likely to 
believe they wrote secure code. 



Some Mitigations… Use Another LLM to Check

CriticGPT:  a model that help catch mistakes in ChatGPT responses 

CriticGPT found the
bug in OpenGPT code



AI/ML Security Recap
When deploying AI/ML in-the-wild, every aspect of the pipeline has 
security concerns.

Unfortunately, the state of defenses is very poor today.
• Companies/people deploying models need to think carefully about the 

harm that could result from unsolved attacks on their system.

Lots of exciting future work thinking about how computer security can 
improve safety of AI/ML, as well as how AI/ML impacts security!

Many topics we didn’t have time to discuss!
• Model extraction, Verifying AI/ML model integrity/correctness, etc.
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Course Retrospective
1. Threat modeling
2. OS & Software security
3. Applied cryptography tools
4. Network security
5. Web security
6. Privacy & anonymity
7. Authentication
8. Protecting corporate networks + AI/ML Security



Some Final Exam Advice

• Don’t panic: Course will be graded on a curve

• Don’t memorize -> Instead focus on concepts: how & why

• Format will be similar to last year’s exam



Next Steps: Other S&P Courses
• CMSC 23206: Security, Privacy, and Consumer Protection

• CMSC 23210: Usable Security and Privacy

• CMSC 23218 Surveillance Aesthetics: Provocations About Privacy and Security in 
the Digital Age

• CMSC 23260: Internet Censorship and Online Speech

• CMSC 25800: Adversarial Machine Learning

• CMSC 25910: Engineering for Ethics, Privacy, and Fairness in Computer Systems

• CMSC 28400: Introduction to Cryptography

• CMSC 33250: Graduate Computer Security 
(called “Introduction to Computer Security” for historical reasons)



Security & Privacy Research @ UChicago
• Aloni: Cryptography & Law/Policy

• Ben: AI/ML + Security & Privacy

• Blase: Human-Centered Security & Privacy, AI Ethics

• David: Applied Crypto (optimal after taking CS 284)

• Heather: AI/ML + Security & Privacy, AR & IoT Security

• Kexin: Software Security, AI/ML for Software Security

• Nick: Privacy + AI/ML & Networking, Automated Content Moderation

• Marshini: Content Moderation, K-12 S&P, Dark Patterns

• Me (Grant): Enterprise Security, AI/ML for Security
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