Authentication Part 2 CMSC 23200, Spring 2025, Lecture 16

Grant Ho

University of Chicago, 05/15/2025 (Slides adapted from Blase Ur)

Logistics

- Assignment 5 due tonight (Thur, May 15) by 11:59pm

- Assignment 3 grades posted
 - Regrade requests until Thurs, May 22
- Final Exam on Wed, May 28 @ 10am (BOTH SECTIONS)
 - Closed notes
 - Practice exams uploaded early next week on Ed

Outline

Recap: Password Cracking Goal & Overview

Password Cracking Methods: Markov Models

Practical Authentication Issues

Password Alternatives / Add-ons

Offline Attack (Password Database Cracking)

Attacker compromises database (e.g., via SQL injection)

hash("Blase's password") =

```
$2a$04$iHdEgkI681VdDMc3f7edau9phRwORvhYjqWAIb7hb4B5uFJO1g4zi

$ = delimiter

2a = bcrypt

04 = 24 iterations (cost)

iHdEgkl681VdDMc3f7edau = 16 bytes of salt (radix-64 encoded)

9phRwORvhYjqWAIb7hb4B5uFJO1g4zi = 24 bytes of hash output (radix-64 encoded)
```

- Attacker makes guesses (from most likely/probable to the least) and hashes those guesses
- Finds match → try on other sites
 - Password reuse is a core problem

Password Cracking

80d561388725fa74f2d03cd16e1d687c

- 1. h("123456") = e10adc3949ba59abbe56e057f20f883e
- 2. h("password") = 5f4dcc3b5aa765d61d8327deb882cf99
- 3. h("monkey") = d0763edaa9d9bd2a9516280e9044d885
- 4. h("letmein") = 0d107d09f5bbe40cade3de5c71e9e9b7
- 5. h("p@ssw0rd") = 0f359740bd1cda994f8b55330c86d845
- 6. h("Chic4go") = **80d561388725fa74f2d03cd16e1d687c**

Some Key Password-Cracking Approaches

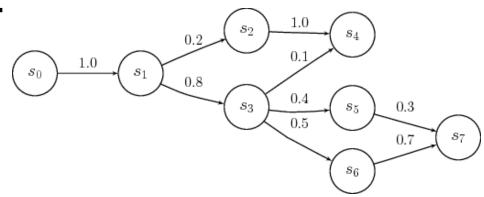
- Brute 1
- Wordli
- Mangle
 - Hash
- Markor
- Probat
- Deep |
- In prac

GOAL:

- Generate a high-probability list of password guesses, such that guesses likely correspond to real passwords
 - (i.e., learn real passwords from breached database as efficiently / quickly as possible)

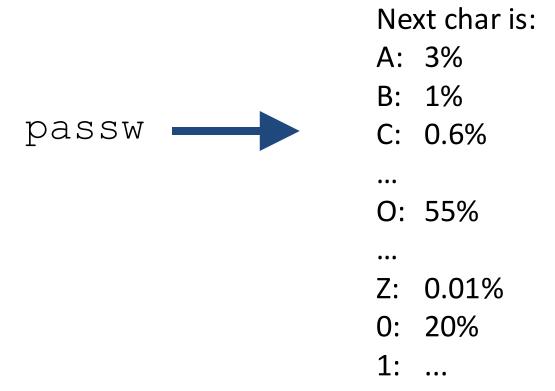
Outline

Recap: Password Cracking Goal & Overview


Password Cracking Methods: Markov Models

Practical Authentication Issues

Password Alternatives / Add-ons


Markov Models

- Predicts future characters from previous (n-gram)
- Approach requires training data:
 - Passwords
 - Dictionaries

- Smoothing is critical
 - Enables model to handle unseen char combinations

passw oor maybe 0 or 0 or ...

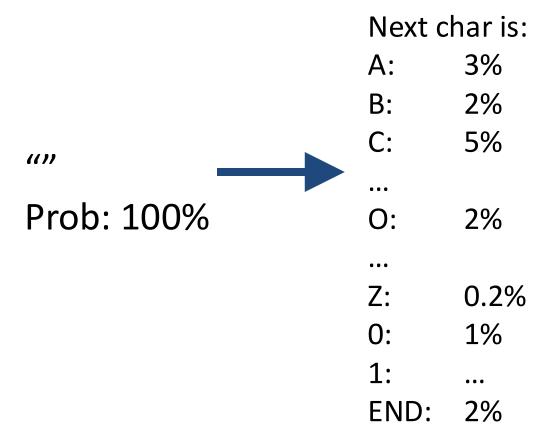
Markov Models: Training

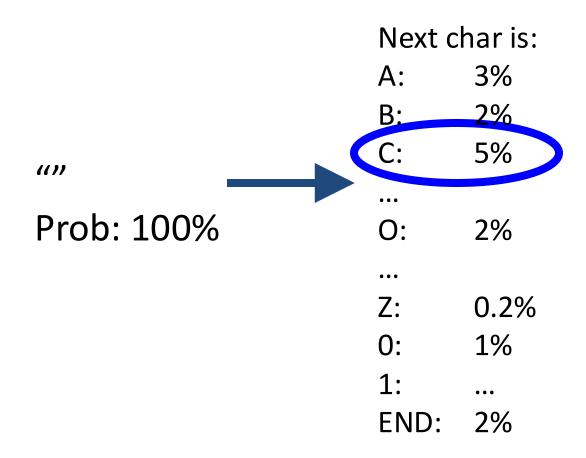
chic4gooo

```
2-gram model (1 character of context):

[start] \rightarrow c (1.0)

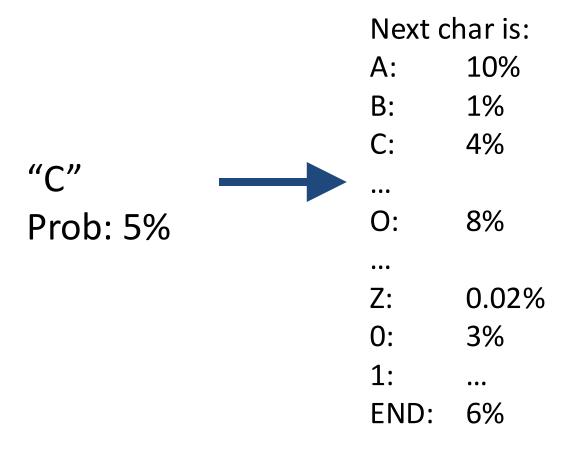
4 \rightarrow g (1.0)

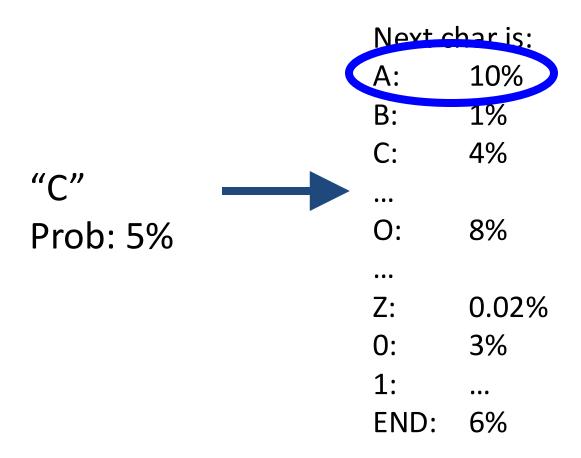

c \rightarrow h (0.5), 4 (0.5)

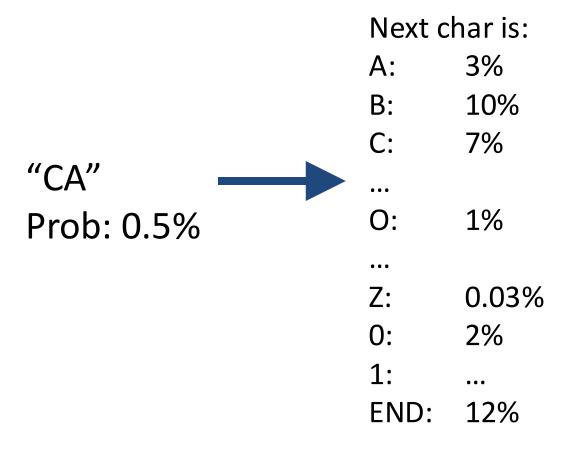

g \rightarrow o (1.0)

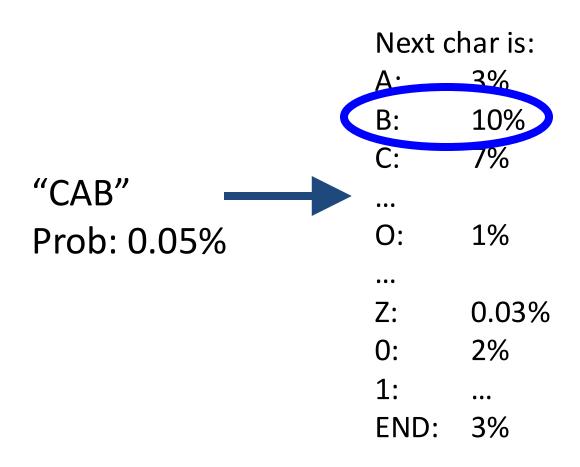
h \rightarrow i (1.0)

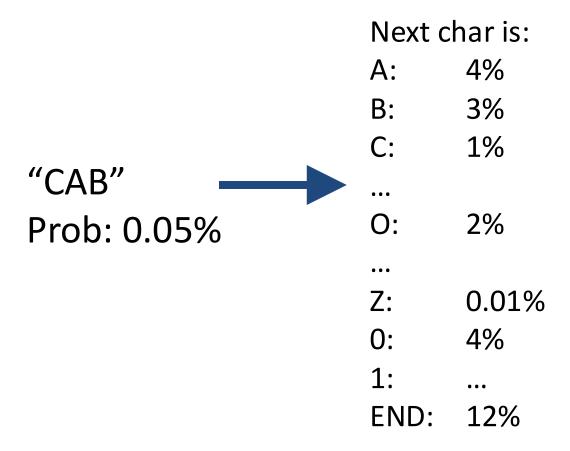
i \rightarrow c (1.0)

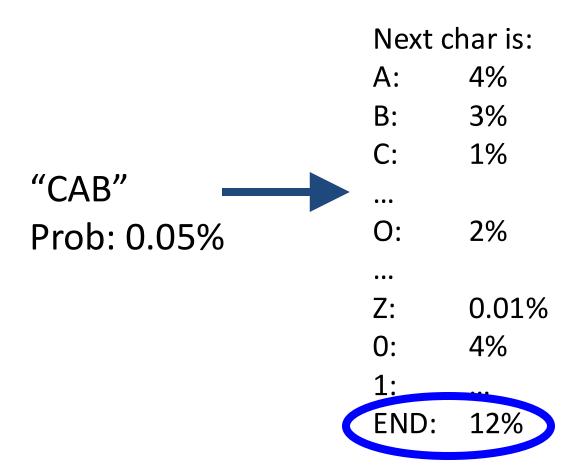

o \rightarrow o (0.67) [end] (0.33)
```






"C"


Prob: 5%



"CAB"

Prob: 0.006%

```
CAB - 0.006%
```

CAC - 0.0042%

ADD1 - 0.002%

CODE - 0.0013%

• • •

Professionals ("Pros"): Password Cracking

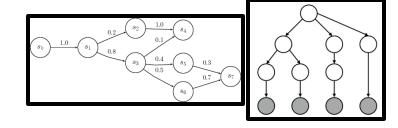
- Proprietary wordlists and configurations
 - Also use automated tools like Markov models
 - Manually tuned & interactive updates/tuning during attack
- For example: KoreLogic
 - Password audits for Fortune 500 companies
 - Run DEF CON "Crack Me If You Can"

How different are "Pro" results?

4 password sets

5 approaches

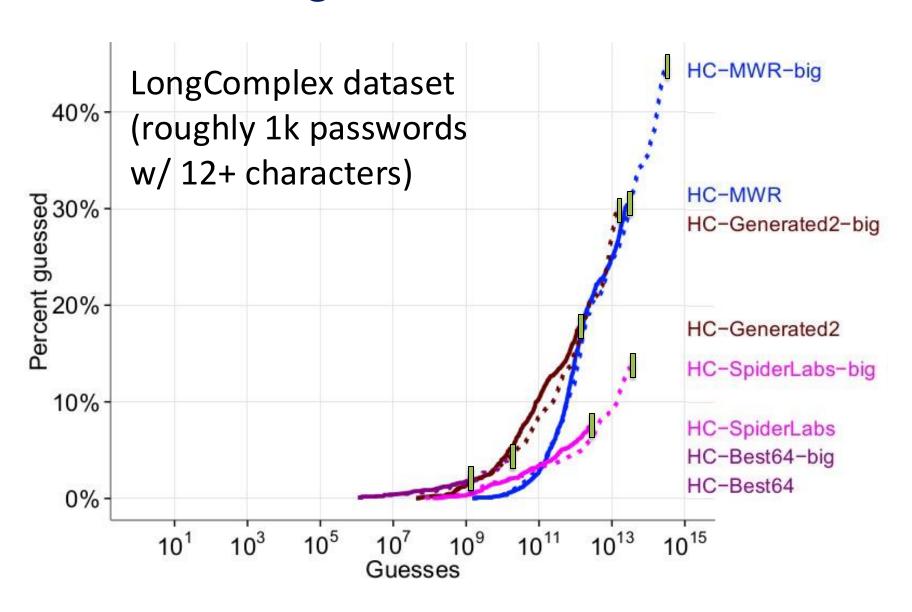
password iloveyou teamo123

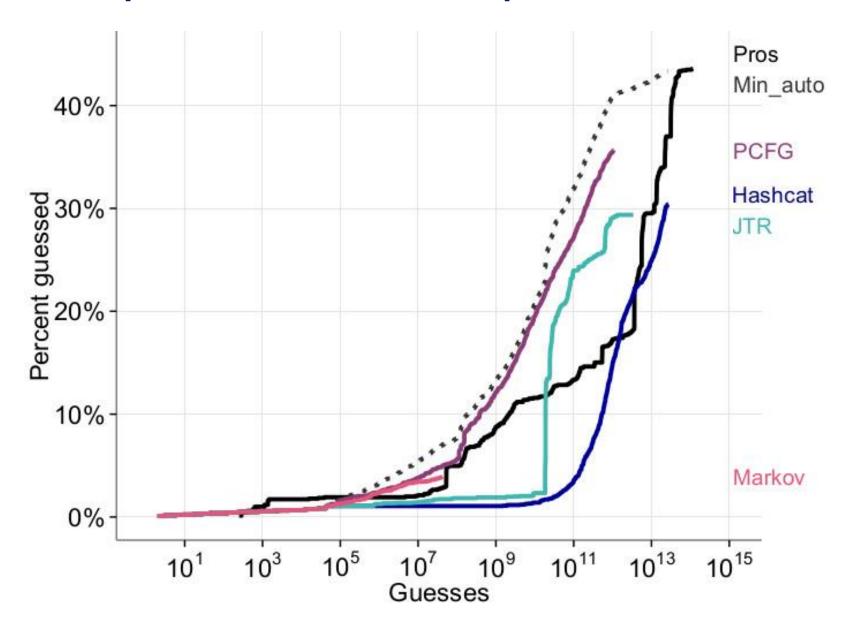

> passwordpassword 1234567812345678 !1@2#3\$4%5^6&7*8

Pa\$\$w0rd iLov3you! 1QaZ2W@x

pa\$\$word1234
12345678asDF
!q1q!q1q!q1q

John Ripper





Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Saranga Komanduri, Darya Kurilova, Michelle L. Mazurek, William Melicher, Richard Shay. Measuring Real-World Accuracies and Biases in Modeling Password Guessability. In *Proc.* USENIX Security Symposium, 2015.

Configuration Is Crucial

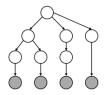
Comparison for Complex Passwords

Per-Password Highly Impacted

P@ssw0rd!

Per-Password Highly Impacted

• JTR guess # 801 John


P@ssw0rd!

Per-Password Highly Impacted

• JTR guess # 801 John

Not guessed in 10¹⁴ PCFG guesses

Outline

Recap: Password Cracking Goal & Overview

Password Cracking Methods: Markov Models

Practical Authentication Issues

Password Alternatives / Add-ons

Authentication in Practice: Password Reuse ®

Password Reuse is Very Common

Subscribe - Get Latest News

Home

Data Breaches

Cyber Attacks

Vulnerabilities

Webinars

Expert Insights

Contact

Q

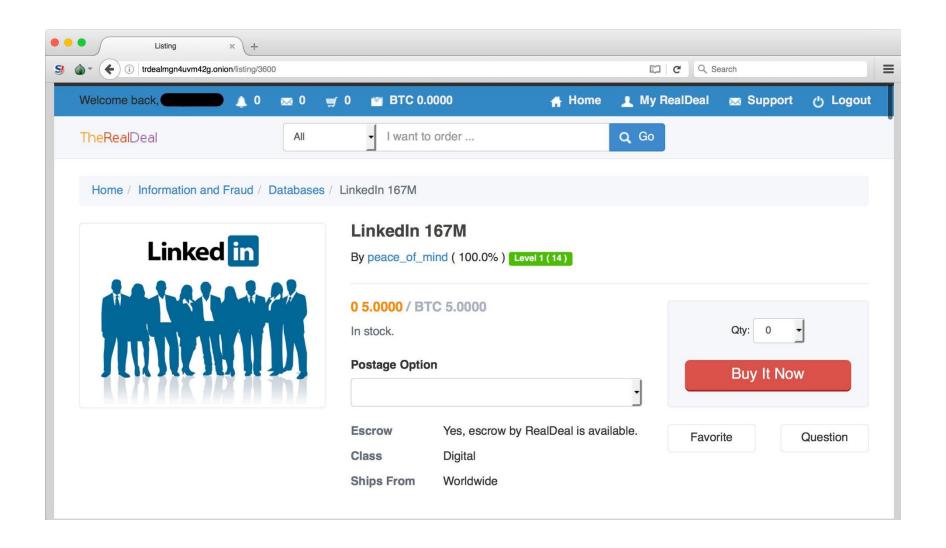
Facebook CEO Zuckerberg's Twitter, Pinterest accounts Hacked! And the Password was...

Trending News

Google Rolls Out On-Device Al Protections to Detect Scams in Chrome and Android

Security Tools Alone Don't Protect You — Control Effectiveness Does

Reevaluating SSEs: A Technical Gap Analysis of Last-Mile Protection



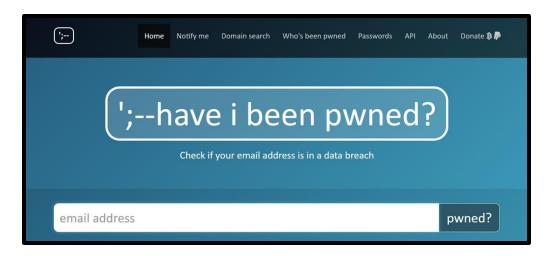
Fake Security Plugin on WordPress Enables Remote Admin Access for Attackers

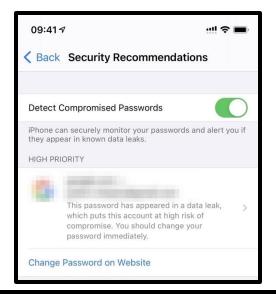
SonicWall Patches 3 Flaws in SMA

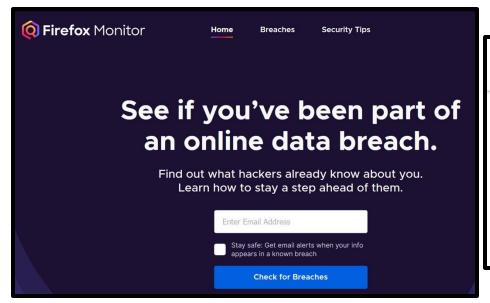
Monitoring the Underground Economy

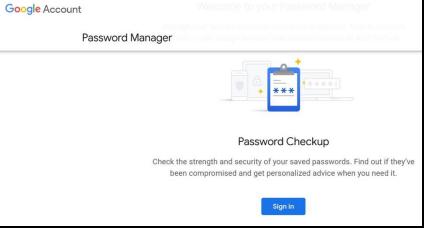


SECURITY


Facebook buys black market passwords to keep your account safe


The company's security chief says account safety is about more than just building secure software.


BY KATIE COLLINS | NOVEMBER 9, 2016 12:56 PM PST



Checking for Compromised Credentials

https://www.zdnet.com/article/google-launches-password-checkup-feature-will-add-it-to-chrome-later-this-year/https://ios.gadgethacks.com/how-to/ios-14-monitors-your-passwords-protect-you-against-data-breaches-heres-works-0341281/

Password Managers

- Use one master password & have the password manager randomly generate + autofill passwords for every website
- Need to trust password manager service (software, sometimes service's web servers) and your single master password
 - Often still a good idea + best practice

Authentication in Practice: I Forgot My Password

Password/Account Reset: Big Challenge!

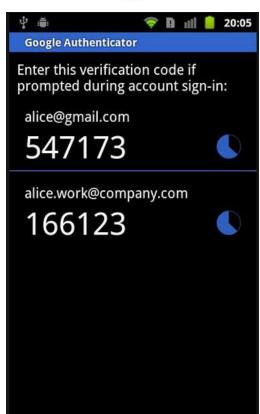
Help! I forgot my password!

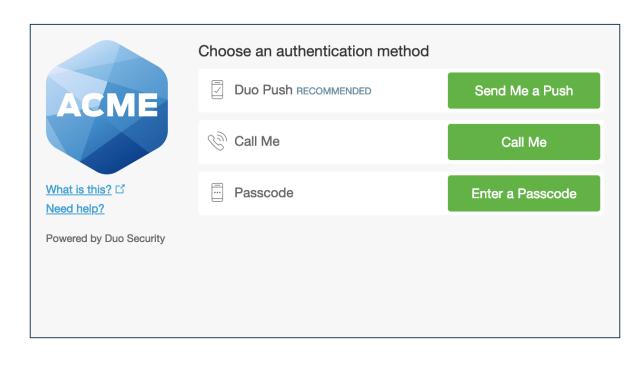
- (No backup)
- Send an email?
- Security questions?
- In-person verification?
- Other steps?

Outline

Recap: Password Cracking Goal & Overview

Password Cracking Methods: Markov Models

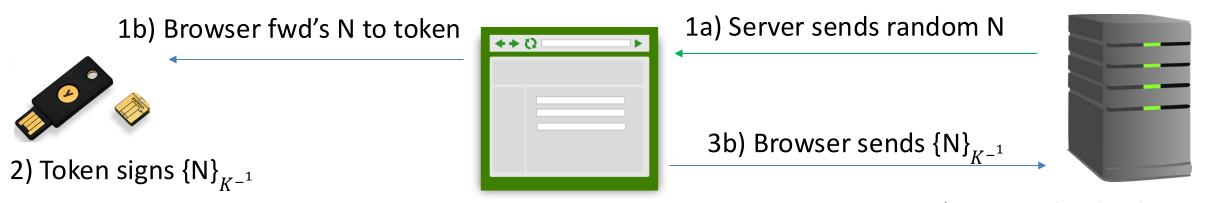

Practical Authentication Issues


Password Alternatives / Add-ons

Two-Factor Auth

Hardware 2FA: Physical Tokens

- Codes based on a cryptographic key & challenge-response
 - User interaction (e.g., pushing button triggers device to sign/verify the challenge)


U2F: Hardware 2FA Protocol

Hardware 2FA token has a public & private key pair embedded in device

A. Setup

- 1. Alice's browser gets K = 2FA token's public key and sends K to server
- 2. Server stores (username, K) in its 2FA database

B. Authentication

3) User taps on token, which then fwd's $\{N\}_{K^{-1}}$ to browser

4) Server checks that N matches 1a) and verifies signature on $\{N\}_{K^{-1}}$

Adding Phishing Resistance

1b) Browser fwd's N to token

AND it includes D = domain of

actual webpage in browser

1a) Server sends random number N

3b) Browser sends $\{N, D\}_{K^{-1}}$

- 2) Token signs $\{N, D\}_{K^{-1}}$
 - 3) User taps on token, which then fwd's $\{N, D\}_{K^{-1}}$ to browser

- 4) Server checks:
- D matches its domain
- N matches what it sent
- Valid signature on $\{N, D\}_{K^{-1}}$

Phishing Attack Now Fails!

During phishing attack, browser will be at website w/ domain
 D' = gmail.com, instead of real domain
 D = gmail.com

Phishing Attack Now Fails!

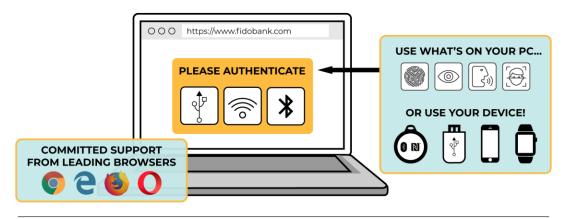
During phishing attack, browser will be at website w/ domain D' = gmail.com, instead of real domain D = gmail.com

1b) Browser fwd's N to token

AND it includes D' = domain of actual webpage in browser

1a) Gmail sends random number N

3b) Browser sends $\{N, D'\}_{K^{-1}}$


- 2) Token signs $\{N, D'\}_{K^{-1}}$
 - 3) User taps on token, which then fwd's $\{N, D'\}_{K^{-1}}$ to browser

- 4) Gmail checks:
- N matches what it sent
- Valid signature on {N, D'}_{K-1}
- But D' doesn't match its domain!

Passwordless FIDO2

- Goal: Authenticate on the web using public-key crypto directly, instead of using passwords (e.g., with U2F hardware tokens)
- Originally intended to be implemented in specialized hardware (e.g., 2FA tokens)
 - But now allows for other authenticators like TouchID

FIDO2 BRINGS SIMPLER, STRONGER AUTHENTICATION TO WEB BROWSERS

FIDO AUTHENTICATION: THE NEW GOLD STANDARD

Protects against phishing, man-in-the-middle and attacks using stolen credentials

Log in with a single gesture – HASSLE FREE!

services

Passkeys

Goal: Make FIDO2 / WebAuthn more usable by syncing the private key across devices

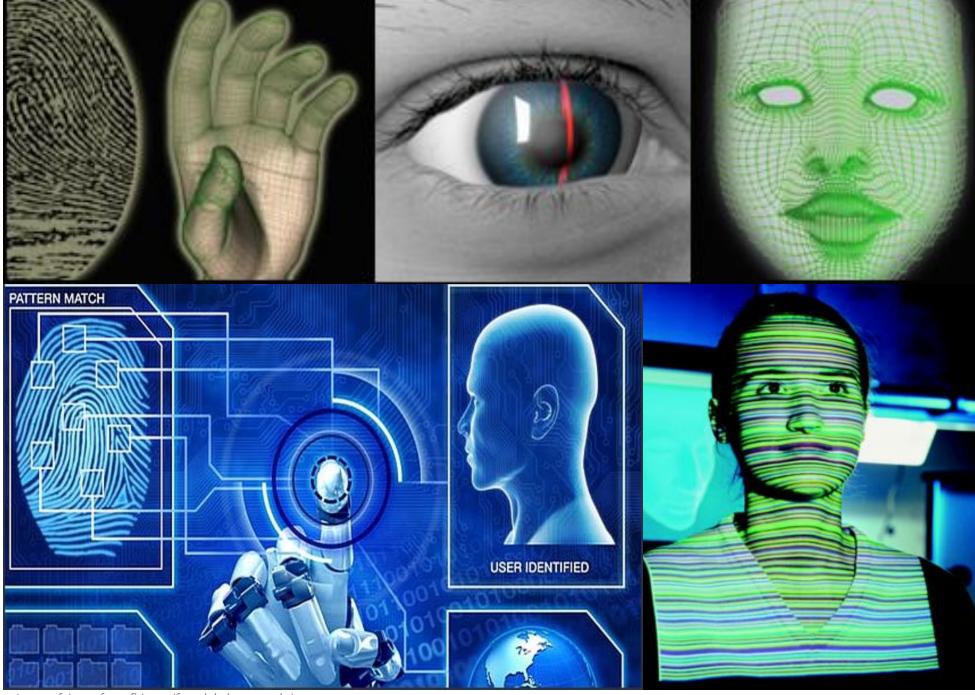
- See: https://developers.google.com/identity/passkeys
- Example of Google's changing approach over the years:

Our Passwordless journey

Passkeys bring us much closer to the passwordless future we've been mapping out for over a decade.

2008	2011	2012	2013	2014	2017	2019	2023
Launched Google Password Manager for easier and safer sign-ins.	Enabled 2-Step Verification (2SV) for Google accounts.	Introduced phishing- resistant security key for Google employees.	Joined the FIDO Alliance to drive open standards for a passwordless world.	Expanded phishing- resistant security keys for everyone.	Introduced Advanced Protection Program (APP) for high-risk users.	Extended our FIDO support in Android for passwordless re-auth across websites.	Enabled passkeys for Google Accounts, Workspace customers and 3rd party partners on Chrome and Android.

Modern Password / Auth Recommendations


What can websites do to strengthen authentication?

- Rate-limit authentication attempts
- Minimum password length should be at least 8 characters
- Maximum password length should be at most 64 characters
 - Do not allow unlimited length, to prevent denial-of-service
- Promptly check passwords vs. known breach datasets
- Encourage/require use of two-factor authentication (consider password-less FIDO2)

What about Biometrics?

Images fair use from wordpress.com and kaspersky.com, as well as Creative Commons from matsuyuki on Flickr

Images fair use from fbi.gov, ifsecglobal.com, and siemens.com

Biometrics

- Physical
 - Fingerprint
 - Iris scans or retina scans
 - Face recognition
 - Finger/hand geometry
- Behavioral
 - The way you type
- Mixed / Hybrid
 - Voice or speech recognition
 - Many others

Smartphone Biometrics

- Purpose is to reduce the number of times a user must enter their password
- Falls back to the password
- Some facial recognition systems can be tricked by a photo
- Some fingerprint recognition systems can be tricked by a gummy mold

Biometrics Authentication

- During "enrollment":
 - Device extracts a set of features from biometric input
 - ML model trained on this set of features
- During authentication ("test time")
 - Features extracted from new biometric input
 - ML model used to classify whether new input is "close enough" to target user
- "ML model" & classification could just be similarity/distance between enrollment input & authentication input

Practical Challenges for Biometrics

- Immutable (can't be changed easily)
- But biometrics can inadvertently change over time (e.g., injury), sensitive to environment changes, etc.
- High equipment costs (client-side)
- Non-secret and potentially easy to forge
- Potentially sensitive data