15. Authentication
Part 1

tigger

= prifcess

Guest Lecture by David Cash
May 13, 2025 T8 THE UNIVERSITY OF

CMSC 23200 CHICAGO

Who Am |7

 Grant Ho

— Distinguished security researcher

— Recently moved here from California; hates the cold
— Fan of hot dogs

— Ed course forum expert

Or Am |?

(I’'m actually David Cash — davidcash@uchicago.edu)

How (and why) do we
authenticate users?

This Lecture

1. Authentication Basics: Principles and Methods
2. Passwords!
3. Attacking Passwords

Authentication in the Abstract

* Principal: legitimate owner of an identity
« Claimant: entity trying to be authenticated

* Verify that people or things (e.g., server) are who they
claim, or maybe that the claimant has some attribute

 Authentication # Authorization # Access Control

— Authorization is deciding whether an entity should have access
to a given resource

— Access control lists / policies

Authentication Use Cases

» Explicit authentication
— Single-factor authentication
— Multi-factor authentication (e.g., with Duo)
 Implicit authentication
— Continuous authentication (e.g., with behavioral biometrics)

* Risk-based authentication: vary auth requirements based
on estimated risk

How We Authenticate (1/2)

« Something you know
— Password
— PIN (Personal Identification Number)

« Something you have
— Private key (of a public-private key pair)
— Hardware device (often with a key/seed)
— Phone (running particular software)
— Token (e.qg., string stored in a cookie)

How We Authenticate (2/2)

« Something you are

— Biometrics (e.qg., iris or fingerprint)

— Behavioral tendencies (behavioral biometrics)
 Somewhere you are

— Location-limited channels

— IP address

« Someone you know (social authentication)

* Some system vouches for you
— Single sign-on (e.g., UChicago shib/Okta)
— PKI Certificate Authorities

wIVIvG

wurd

9] 3%557

W
iasNQJcDaSSWU |
damelg §
=i
playboy GEGEEE 4§ asmee -5

*.".‘:L_;;_

,-,rnckuuu ""l‘"‘EElé“wg

=i prmcess

{ /i |
l'-’"mlchael - U

Why Are Passwords So Prevalent?

 Easy to use

« Easy to deploy

* Nothing to carry

* No “silver-bullet” alternative

Why Are Passwords So Prevalent?

Memorywise-Effortless
Scalable-for-Users

Nothing-to-Carry -
Physically-Effortless §_
Easy-to-Learn =
Efficient-to-Use e
Infrequent-Errors
Easy-Recovery-from-Loss

Accessible =
Negligible-Cost-per-User L]
Server-Compatible :<5'
Browser-Compatible -8
Mature =3
Non-Proprietary <
Resilient-to-Physical-Observation
Resilient-to-Targeted-Impersonation
Resilient-to-Throttled-Guessing
Resilient-to-Unthrottled-Guessing
Resilient-to-Internal-Observation &
Resilient-to-Leaks-from-Other-Verifiers &
Resilient-to-Phishing .:3*

Resilient-to-Theft
No-Trusted-Third-Party
Requiring-Explicit-Consent
Unlinkable

Why Are Passwords So Prevalent?

Security

a]qvyuljuf]

Juasuo))-11o1dxg-Surimbay

v -pa1y [-paISnAL-ON
Yoy 1-01-judnjisay
Sunysiyd-01-1ualjisay

SUDYLIOA ~42YI() -UOL[-SYDIT-01-1UI1]1S DY
UONDALISG)-[DULIIUT-0F-1UINISIY
Su1ssanD-pajoyIu,) -03-1uaijisay
Su1SSaND-pajioy [-01-1uajisay
UONDUOSI2AU]-P2ITIV -01-1Ud1]1SIY
UONDALISGQ-DI1SKY J-01-1UI11SY

o

0000 Oo0o

O0O0O0 e o
0000 @

® 0

000000

Deployability

uvjaridosg-uoN

NI
2]qupduio)-1asmoug
2]1qupduio)-124.42§
425)-12d-1500)-2]1q1511 82N
2]qis§200Yy

e 0O
®

000000 @

0O0e000O0 @

® 060000 eo0o

[BN J

® 000

e o000
®

Usability

SSOT-UOL[-£424002Y-KsD7
S04 - 1uanba.fug
as[)-01-1u2101J5y

UL -01-LSV
ssapoffg-Korsyg
£1ap)-03-3ury1oN
$.495[)-10f-2]qIDIS
ssapioffg-as1ulioua

0000 0O0GOGOOSOSS

(o]

o 0000
@0 O0e

L e BN o J

[e Re N J

00000

ocoe

Q0UdIOJOY

uondas Ul paqrIosa(

Scheme
Web passwords

Firefox

Category

(Incumbent)

[42]0@ 000000000

[23]|0 @ @

[43]/0 ® ® ©

(44000000 OOG OGS

[45]0 @@ 000000

[46]0 ® ®

[47]

[48]
[49]

[50]

[32]|®

I |[13]

IV-A[22]0@0 0@ e®

IV-B| [5] |@

IV-C|[27]|0 ® ® O

IV-D| [7]

IV-F|[33]

LastPass

Impostor

URRSA
OpenlID

Microsoft Passport

Facebook Connect

BrowserID

OTP over email
PCCP

PassGo

GrIDsure (original) |TV-E|[30]

Weinshall

Hopper Blum

Word Association

OTPW
S/KEY

Password managers

Proxy

Federated

Graphical

Cognitive

Paper tokens

Attacks Against Passwords

* Phishing attack: try to trick the user into giving their
credentials to you, believing you are the legitimate system
— Spear phishing: targeted to the recipient

Phishing Scheme Targets Professors’
Desire to Please Their Deans — All for
$500 in Gift Cards

By Lindsay Ellis | JANUARY 23,2019

Brenner, an assistant professor of

counseling psychology at the

University at Albany’s School of

e to campus, her mind abuzz. Maybe it

bout her research, which they’d discussed the day before. As soon as she

Attacks Against Passwords

* Shoulder surfing: looking at someone else entering their
credentials

Attacks Against Passwords

 Web server breach: attacker steals the whole password
database from the server!

@ Home Notify me Domain search Who's been pwned Passwords API About Donate B P

Pwned Passwords

Pwned Passwords are hundreds of millions of real world passwords previously exposed in data breaches. This exposure
makes them unsuitable for ongoing use as they're at much greater risk of being used to take over other accounts. They're
searchable online below as well as being downloadable for use in other online systems. Read more about how HIBP protects

the privacy of searched passwords.

password

Some Breached Companies

ASHLEY MADIS&N" ' 1
Life is Short. Have an Affair.®
! -, . (

L\}&-;.

Linked [T}
SONY.

BGAWKER

20

(7
(C VYaHoO!
AHOO!
000webhost.com [SNSTRATFOR

GLOBAL INTELLIGENCE

1111111111111111111111111

Data-Driven Statistical Attacks

* (2009) 32 million passwords: rockgou

* (2016) 117 million passwords: Linkedm

» (2017) 3 billion passwords: YAaHOO!
— Still not released publicly as of 2024

Let's take a look at a breach!

... but first, Is this ethical?

Have | Been Pwned (as of 2/19/24)

haveibeenpwned.com

744 12,961,127,682 115,769 228,884,627

pwned websites pwned accounts pastes paste accounts

Largest breaches Recently added breaches

)91 Collection #1 accounts . 207,114 Spoutible accounts
241 Verifications.io accounts My 5,970,416 MyPertamina accounts

peRTAMNG

522 Onliner Spambot accounts 15,111,945 Trello accounts

&
=

? Data Enrichment Exposure From 0,840,771 Naz.APIl accounts

PDL Customer accounts 80 Hathway accounts

7 Exploit.In accounts 181 Legendas.TV accounts

28 Facebook accounts 48,145 DC Health Link accounts

38 Anti Public Combo List accounts 05 InfateVids accounts

(< (1] & i

309 River City Media Spam List e evE

accounts ,
66 Gemplex accounts
apmyspace 359 420,698 MySpace accounts

765,495 Wattpad accounts

Securely Storing Passwords (as a website/server)

* Goal: Prevent attacker from being able to use a stolen
password database immediately (without more work)

» Hash function: one-way function

— Traditionally designed for efficiency (e.g., MD5, SHA-2), but
don’t ever use those!

— Use password-specific hash functions (e.g., bcrypt, scrypt,
Argon2)

* Instead of storing (username, password), store
(username, hash(password))

Hashing on one NVIDIA RTX 4090

* Hashcat benchmarks

 MD5: ~ 150 billion / second

« SHA-1: ~ 50 billion / second

« UNIX mdbcrypt: ~ 60 million / second
 NTLM: ~ 250 billion / second

« SHA-2 (256): ~ 20 billion / second

* becrypt (32 iterations): ~ 240,000 / second
 scrypt (16,384 iterations): ~ 7,000 / second

Storing Passwords

« Salt: random string assigned per-user
— Combine the password with the salt, then hash it
— Stored alongside the hashed password

— Prevents the use of rainbow tables (hash outputs are
precomputed for many passwords, mapping sorted by output)

— Increases the attacker’s work proportional to the number of
accounts

* Pepper: secret salt (very uncommon)
» Both salt and hash passwords

Typical (Web) Account Creation

User sends username and desired password over an
encrypted tunnel

Server validates username (e.g., does it exist in the
system?) and password (e.g., does it meet composition
requirements?)

Server generates a random salt

— Think about how long the salt should be!

Server stores username, salt, and hash(password,salt)
In database

Typical (Web) Authentication

* User sends username and password, over an encrypted
tunnel

» Server looks up the salt and hash output associated with
that username

» Server computes hash(password,|salt)

* |f it matches the hash output in the database, typically
send back auth token (long string attacker can’'t guess
associated with that user’s session)

Password Guessing
Attacks: Online & Offline

Guessing Attacks Against Passwords

* Online attack (web)
— Try passwords on a live system
— Usually rate-limited

€ |8 Twitter, Inc. [US]| https://twitter.com

’ Home , Moments

Yikes! We need you to wait for a bit before trying to login again.

To control abuse, we limit the number of attempted logins per hour.

help article

Please try again in 60 minutes.

Guessing Attacks Against Passwords

* Online attack (web)
— Try passwords on a live system
— Usually rate-limited

» Authenticating to a device is often similarly rate-limited
(e.g., iIPhone PIN) using secure hardware

Guessing Attacks Against Passwords

« Offline attack (web)

— Try to guess passwords from a stolen copy of the password
store or password database

Guessing Attacks Against Passwords

« Offline attack (web)

— Try to guess passwords from a stolen copy of the password
store or password database

 Attacking a file encrypted using a key derived from a
password (e.g., with PBKDF2) is similar

Offline Attack (In Practice)

» Attacker compromises database (e.g., via SQL injection)
— hash(“Blase”) =

$ = delimiter

2a = bcerypt

04 = 24 iterations (cost)

iIHdEgklI681VdDMc3f7edau = 16 bytes of salt (radix-64 encoded)
9phRwORvVhYjgWAIb7hb4B5uFJO1g4zi = 24 bytes of hash output (radix-64 encoded)

« Attacker makes guesses (from most likely/probable to the
least) and hashes those guesses

* Finds match - try on other sites
— Password reuse is a core problem

Attack Model

80d561388725fa74f2d03cd16e1d687c

(o

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456"”) = e10adc3949ba59abbe56e057f20f883e

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456"”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456"”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885

Attack Model

80d561388725fa74f2d03cd16e1d687c

h(“123456”) = e10adc3949ba59abbe56e057f20f883e
h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885
h(“letmein”) = 0d107d09f5bbe40cade3de5¢c71e9e9b7

1.
2.
3.
4.

Attack Model

80d561388725fa74f2d03cd16e1d687c

h(“123456”) = e10adc3949ba59abbe56e057f20f883e
h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885
h(“letmein”) = 0d107d09f5bbe40cade3de5¢c71e9e9b7
h(“p@sswO0rd”) = 0f359740bd1cda994f8b55330c86d845

1.
2.
3.
4.
5.

Attack Model

80d561388725fa74f2d03cd16e1d687c

h(“123456”) = e10adc3949ba59abbe56e057f20f883e
h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885
h(“letmein”) = 0d107d09f5bbe40cade3de5¢c71e9e9b7
h(“p@ssw0rd”) = 0f359740bd1cda994f8b55330c86d845
h(“Chic4go”) = 80d561388725fa74f2d03cd16e1d687c

1.
2.
3.
4.
5.
6.

Password Cracking

o T B B

Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Saranga Komanduri, Darya Kurilova,
Michelle L. Mazurek, William Melicher, Richard Shay. Measuring Real-World Accuracies and Biases in Modeling
Password Guessability. In Proc. USENIX Security Symposium, 2015.

Statistical Metrics For Passwords

 Traditionally: Shannon entropy
* Recently: a-guesswork

« Disadvantages of statistical approaches
— Entropy does not consider human tendencies
— Usually no per-password estimates

— Huge sample required for accuracy (since many passwords are
related to each other)

— Does not model real-world attacks

Parameterized Guessability

 How many guesses a particular cracking algorithm with
particular training data would take to guess a password

Parameterized Guessability

Chic4dgo

Guess # 06

Parameterized Guessability

7@mesb0nd007!

Guess # 366,163,847,194

Parameterized Guessability

n(cSJZX! zKc "bIAX"N

Guess # past cutoff

Some Key Password-Cracking Approaches

» Brute force (or selective brute force)
* Wordlist

* Mangled wordlist
— Hashcat and John the Ripper

 Markov models

* Probabilistic Context-Free Grammar
* Deep learning

 In practice: manual, iterative updates

Mangled Wordlist Attack

Wordlist

Super
Password
Chicago

Mangled Wordlist Attack

Wordlist Rulelist
Super 1. Append “1”
Password 2. Replace “@” - “4”
Chicago 3. Lowercase all

Mangled Wordlist Attack

Wordlist Rulelist Guesses
Super 1. Append “1” Superl
Password 2. Replace “@” - “4”

Chicago 3. Lowercase all

Mangled Wordlist Attack

Wordlist Rulelist Guesses
Super 1. Append “1” Superl
Password 2. Replace “@” - “4” Password1
Chicago 3. Lowercase all

Mangled Wordlist Attack

Wordlist Rulelist Guesses
Super 1. Append “1” Superl
Password 2. Replace “@” - “4” Password1
Chicago 3. Lowercase all Chicagol

Mangled Wordlist Attack

Wordlist

Super
Password
Chicago

Rulelist

Guesses

1. Append “1”
2. Replace “a” - “4”
3. Lowercase all

Superl
Passwordl
Chicagol
Super
P4ssword
Chic4dgo

Mangled Wordlist Attack

Wordlist Rulelist Guesses

Super 1. Append “1” Superl
Password 2. Replace “@” - “4” Password1
Chicago 3. Lowercase all Chicagol
Super
P4ssword
Chic4dgo
super
password
chicago

Example Wordlists and Rulelists

Wordlist

PGS (= 20,000,000)
Linkedin (= 60,000,000)

HIBP (= 500,000,000)

Example Wordlists and Rulelists

Wordlist Rulelist
PGS (= 20,000,000) Korelogic (= 5,000)
Linkedin (= 60,000,000) Megatron (= 15,000)

HIBP (= 500,000,000) Generated?2 (= 65,000)

Example Wordlists and Rulelists

Wordlist Rulelist
PGS (= 20,000,000) Korelogic (= 5,000) : 10° - 101>
Linkedin (= 60,000,000 Megatron (= 15,000) guesses

HIBP (= 500,000,000) Generated?2 (= 65,000)

Example Wordlists and Rulelists

Wordlist Rulelist

PGS (= 20,000,000) Korelogic (= 5,000) [
Linkedin (= 60,000,000) Megatron (= 15,000)

HIBP (= 500,000,000) Generated?2 (= 65,000)

+ Hackers’ private word/rule lists

10° - 10%°
guesses

John the Ripper

Wordlist mode requires:
— Wordlist (passwords and dictionary entries)
— Mangling rules

Guesses variants of input wordlist
Speed: Fast
“JTR”

guesses
»

o

&

ru _,mm

wordlist
A
| !

John the Ripper

John the Ripper

—

uchicago
fun-dies

1S/|pIOM

S9N

|
SoSSan

0

John the Ripper

—

uchicago
fun-dies

1S/|pIOM

S9N

|
SoSSan

0

John the Ripper

—

uchicago
fun-dies

L]

1S/|pIOM

S9N

|
SoSSan

0

John the Ripper

—

uchicago
fun-dies

[l2cc 1 at end]}

1S||pIOM

S9N

\

A

uchicago

—

fun-dies
uchicago?

fun-dies

0

SoSSan

John the Ripper

—

uchicago
fun-dies

1S||pIOM

[chorcec o]

S9N

A

—

uchicago
fun-dies
uchicago?
fun-dies

uchicago

|
SoSSan

fun-di3s

0

Hashcat

* Wordlist mode requires.
— Wordlist (passwords and dictionary entries)
— Mangling rules

» Guesses variants of input wordlist

* (Many other modes)

« Speed: Fast hashcat

advanced
password
recovery

Hashcat

hashcat

advanced
password
recovery

|

}SI|PIOM
, =

S9N

|
SoSSan

0

Hashcat

uchicago
fun-dies

hashcat

advanced
password
recovery

—

|

}SI|pIom ~
, =

S9N

|
SoSSan

0

Hashcat

—

fun-dies

hashcat

advanced
password
recovery

|

UcC

}SI|pIom
, =

UcC

S9N

uchicago

nicago’

nicago

0

SoSSan

Hashcat

uchicago
fun-dies

—

hashcat

advanced
password
recovery

|

}SI|pIom
, =

S9N

uchicago

uchicago?

uchicago

fun-dies

fun-c

fun-d

es
13S

0

SoSSan

Hashcat Mangling-Rule Language

Hama

tion

Mothing |:

ILMP-
case
Upper=
ase |
Capital-
lze

Irreeri
Capiral=
_ill

Toggle

Lase]
Toggle @
Riret 156
Dupli=
cae
Dupli-
cate N
Reflect

otate
Left
Rotare
Righe
Agperd
Lharac-
.1¢r |
Peepend
Lrarsg-
ter |
Truncate
Trucate
ngnt
Delete
N

Fazract
rangs
Omit
jangs |
Insert @
N 4

Dwer=
write @
L

Truncate |
BN |
Replace

&

Pt

™

P

BN

b1

AN

[
|
DN

L

M

oA

N

XY

Description

o nathing

Lowwtrcase all letners

Uppercase all letbers

Capitalize tht First letmer and bowes the rest

Lowercase first found character, wppercave the
rest

Tegghe the case of all chasscoers in word,
.Tnm}t-l the case of characters at position N
Rirwirsn 1R gnting word

.Dupllube entine word

Agpend duplicated word N s
.Dl.lpllubl word neversed

Rotaned 18 wand bif.

Rotabes thee word rigi

Append character X to end

Prepend chasactes X o fros

Deletes first character

.DH'IDH last character

Defetes character 3t poaition M

.Eunu'u. M characiers, s1aming at position N
Defetes M characiers, starding at position N

InSERS Character X a1 peition N
Dwveratites character at posicion N with X

Truncats warnd 48 podition N
Replace all instances of X withi ¥

Parg all initsnces of X

Exam-

ple
Rule

C

§1

sl

1
Dy

wid

a1

]

LER]

&

133

1

Ingut

s
Word

Pt

Wiird

piiss-
/ward

B

Wiird

pias-

‘Ward

o
ward

ps-|
WO

piEne-

Wird

e
Word
pias-
word
P
Word
piEas-
P
Word

BE-
Wrd

s

Word

piss-

B

Wird

s
‘Waord

pEtL-|

Wird

s

P~

Wird

pias-

Wird

e

Ward

P

“WOnd

PESE o muied

Duiput Word Note

P Wird
@aswind
PEAWORD
PEaswiind
DESIWORD
PESSwORD
W lrd

Ariwsgn

| pEssWOrdpEss |
Wiedl

o sWlrdpEes |
[WirdiiEasWlnd |

EssWird-
AOWasER

2asWindp

dpgsslr

pEssWirdl

TpEuitiied

Erwird

EasOr
W0

oW lingd

@4 Wird

o@sFword

B
pEE Fwdrd

-

Name Function Description |Example Rule Note
Reject less =N Reject plains if their length is greater than N <G -
Reject greater >N Reject plains if their length is less or equal to N >B "
Reject equal _N Reject plains of length not equal to N _7 -
Reject contain (14 Reject plains which contain char X lz
Reject not contain | /X Reject plains which do not contain char X fe
Reject equal first | (X Reject plains which do not start with X (h
Reject equal last |)X Reject plains which do not end with X It
Reject equal at =MNX Reject plains which de not have char X at position N =1a *

ject contains | RMX Reject plains which contain char X less than N times Hla ®

eject p
Reject contains | O | Reject plains where the memory saved matches current word | rMrQ) ‘e.g. for palindrome
Mame I':"':‘“ Description m:""" Input Ward E:‘l:‘“ Note
Swap front 'k | Swaps first two characters |k piEssWied | @pssWird
Swap back K Swaps last two characters |4 pEdaWird | p@iswWodr
|Swap @ N "NM Swaps character at position M with character at pesition M |34 |p@ssWiled | pRswWsOrd |~
Bitwise St IUN - @itwise shift eft character @ N L2 pEssWOrd | pEasWOrd |*
E.'ig“h‘:“ SHIft pay | Bitwise shift right eharactes @ N 2 pEssWied | pEOSWOrd |
f:;: ment | ¥ |Increment character @ N by 1 aseil value +2 pEssWOrd | pEtsWOrd |+
:::iri!ment =N | Decrement character & N by 1 ascll value =1 p@ssWilrd | plssWird |*
T'pli‘“ N+ Replaces character @ N with value at @ N plus 1 1 pEsswiord | psssWord |+
'Rzpla.ce M-]_-.N _-'R.eplacei character @ N with value at @ N minus 1 1 -p@-sswmd _-ppu’wtlrd [«
Duplicate pRpd@ss- |,
black frant -'|'N -Bupllules first M characters _1'2 Ip@-sswmd Word .
Duplicate " plssWir- |,
_blu-l:k back ¥ -Bupllﬂltl. last N characters _"r'! .p@::wo.rd _drd
Title £ Lower case the whole line, then upper case the first letter and every letter £ pEasWOrd | PEsswlrd
after a space wirld Wirld

Title o Lower case the whole line, then upper case the first letter and every letter pasWind- | PEsawlrd= |
| Wi separator after a custom separator character |wllrld wirld

Hashcat Mangling-Rule Language
*05003d'7

Switch the first and the sixth char;
Delete the first three chars;
Duplicate the whole word;

Truncate the word to length 7;

Hashcat (Other Modes)

« Mask attack (brute force within a specified character-class
structure)

« Combinator attacks
« Hybrid attacks

* Many more!
hashcat
advanced

password
recovery

Markov Models

* Predicts future characters from previous

* Approach requires weighted data:
— Passwords
— Dictionaries

« Speed: Slow
« Smoothing is critical

Markov Models

2-gram model (1 character of context):
[start] = c (1.0)

4= g (1.0)

c=> h (0.5),4(0.5)

g=> o (1.0)

h=>i(1.0)

i = c(1.0)

o => 0 (0.67) [end] (0.33)

	Slide 1
	Slide 2: Who Am I?
	Slide 3: Or Am I?
	Slide 4: How (and why) do we authenticate users?
	Slide 5: This Lecture
	Slide 6: Authentication in the Abstract
	Slide 7: Authentication Use Cases
	Slide 8: How We Authenticate (1/2)
	Slide 9: How We Authenticate (2/2)
	Slide 10: Passwords
	Slide 11: Why Are Passwords So Prevalent?
	Slide 12: Why Are Passwords So Prevalent?
	Slide 13: Why Are Passwords So Prevalent?
	Slide 14: Attacks Against Passwords
	Slide 15: Attacks Against Passwords
	Slide 16: Attacks Against Passwords
	Slide 17: Some Breached Companies
	Slide 18: Data-Driven Statistical Attacks
	Slide 19: Let’s take a look at a breach!
	Slide 20: Have I Been Pwned (as of 2/19/24)
	Slide 21: Securely Storing Passwords (as a website/server)
	Slide 22: Hashing on one NVIDIA RTX 4090
	Slide 23: Storing Passwords
	Slide 24: Typical (Web) Account Creation
	Slide 25: Typical (Web) Authentication
	Slide 26: Password Guessing Attacks: Online & Offline
	Slide 27: Guessing Attacks Against Passwords
	Slide 28: Guessing Attacks Against Passwords
	Slide 29: Guessing Attacks Against Passwords
	Slide 30: Guessing Attacks Against Passwords
	Slide 31: Offline Attack (In Practice)
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Password Cracking
	Slide 40: Statistical Metrics For Passwords
	Slide 41: Parameterized Guessability
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Some Key Password-Cracking Approaches
	Slide 46: Mangled Wordlist Attack
	Slide 47: Mangled Wordlist Attack
	Slide 48: Mangled Wordlist Attack
	Slide 49: Mangled Wordlist Attack
	Slide 50: Mangled Wordlist Attack
	Slide 51: Mangled Wordlist Attack
	Slide 52: Mangled Wordlist Attack
	Slide 53: Example Wordlists and Rulelists
	Slide 54: Example Wordlists and Rulelists
	Slide 55: Example Wordlists and Rulelists
	Slide 56: Example Wordlists and Rulelists
	Slide 57: John the Ripper
	Slide 58: John the Ripper
	Slide 59: John the Ripper
	Slide 60: John the Ripper
	Slide 61: John the Ripper
	Slide 62: John the Ripper
	Slide 63: John the Ripper
	Slide 64: Hashcat
	Slide 65: Hashcat
	Slide 66: Hashcat
	Slide 67: Hashcat
	Slide 68: Hashcat
	Slide 69: Hashcat Mangling-Rule Language
	Slide 70: Hashcat Mangling-Rule Language
	Slide 71: Hashcat (Other Modes)
	Slide 72: Markov Models
	Slide 73: Markov Models

