
15. Authentication

Part 1

Guest Lecture by David Cash

May 13, 2025

CMSC 23200

Who Am I?

• Grant Ho

– Distinguished security researcher

– Recently moved here from California; hates the cold

– Fan of hot dogs

– Ed course forum expert

Or Am I?

(I’m actually David Cash – davidcash@uchicago.edu)

How (and why) do we

authenticate users?

This Lecture

1. Authentication Basics: Principles and Methods

2. Passwords!

3. Attacking Passwords

Authentication in the Abstract

• Principal: legitimate owner of an identity

• Claimant: entity trying to be authenticated

• Verify that people or things (e.g., server) are who they

claim, or maybe that the claimant has some attribute

• Authentication ≠ Authorization ≠ Access Control

– Authorization is deciding whether an entity should have access

to a given resource

– Access control lists / policies

Authentication Use Cases

• Explicit authentication

– Single-factor authentication

– Multi-factor authentication (e.g., with Duo)

• Implicit authentication

– Continuous authentication (e.g., with behavioral biometrics)

• Risk-based authentication: vary auth requirements based

on estimated risk

How We Authenticate (1/2)

• Something you know

– Password

– PIN (Personal Identification Number)

• Something you have

– Private key (of a public-private key pair)

– Hardware device (often with a key/seed)

– Phone (running particular software)

– Token (e.g., string stored in a cookie)

How We Authenticate (2/2)

• Something you are

– Biometrics (e.g., iris or fingerprint)

– Behavioral tendencies (behavioral biometrics)

• Somewhere you are

– Location-limited channels

– IP address

• Someone you know (social authentication)

• Some system vouches for you

– Single sign-on (e.g., UChicago shib/Okta)

– PKI Certificate Authorities

Passwords

Why Are Passwords So Prevalent?

• Easy to use

• Easy to deploy

• Nothing to carry

• No “silver-bullet” alternative

Why Are Passwords So Prevalent?

Bonneau et al. “The Quest to Replace Passwords: A Framework for Comparative
Evaluation of Web Authentication Schemes,” In Proc. IEEE S&P, 2012

Why Are Passwords So Prevalent?

Bonneau et al. “The Quest to Replace Passwords: A Framework for Comparative
Evaluation of Web Authentication Schemes,” In Proc. IEEE S&P, 2012

Attacks Against Passwords

• Phishing attack: try to trick the user into giving their

credentials to you, believing you are the legitimate system

– Spear phishing: targeted to the recipient

Attacks Against Passwords

• Shoulder surfing: looking at someone else entering their

credentials

Photo from https://www.researchgate.net/figure/A-shoulder-surfing-situation-in-a-cafe_fig1_312490451

Attacks Against Passwords

• Web server breach: attacker steals the whole password

database from the server!

https://haveibeenpwned.com

Some Breached Companies

• (2009) 32 million passwords:

• (2016) 117 million passwords:

• (2017) 3 billion passwords:

– Still not released publicly as of 2024

Data-Driven Statistical Attacks

Let’s take a look at a breach!

… but first, is this ethical?

Have I Been Pwned (as of 2/19/24)

Securely Storing Passwords (as a website/server)

• Goal: Prevent attacker from being able to use a stolen

password database immediately (without more work)

• Hash function: one-way function

– Traditionally designed for efficiency (e.g., MD5, SHA-2), but

don’t ever use those!

– Use password-specific hash functions (e.g., bcrypt, scrypt,

Argon2)

• Instead of storing (username, password), store

(username, hash(password))

Hashing on one NVIDIA RTX 4090

• Hashcat benchmarks

• MD5: ~ 150 billion / second

• SHA-1: ~ 50 billion / second

• UNIX md5crypt: ~ 60 million / second

• NTLM: ~ 250 billion / second

• SHA-2 (256): ~ 20 billion / second

• bcrypt (32 iterations): ~ 240,000 / second

• scrypt (16,384 iterations): ~ 7,000 / second

https://www.onlinehashcrack.com/tools-benchmark-hashcat-nvidia-rtx-4090.php

Storing Passwords

• Salt: random string assigned per-user

– Combine the password with the salt, then hash it

– Stored alongside the hashed password

– Prevents the use of rainbow tables (hash outputs are

precomputed for many passwords, mapping sorted by output)

– Increases the attacker’s work proportional to the number of

accounts

• Pepper: secret salt (very uncommon)

• Both salt and hash passwords

Typical (Web) Account Creation

• User sends username and desired password over an

encrypted tunnel

• Server validates username (e.g., does it exist in the

system?) and password (e.g., does it meet composition

requirements?)

• Server generates a random salt

– Think about how long the salt should be!

• Server stores username, salt, and hash(password,salt)

in database

Typical (Web) Authentication

• User sends username and password0 over an encrypted

tunnel

• Server looks up the salt and hash output associated with

that username

• Server computes hash(password0|salt)

• If it matches the hash output in the database, typically

send back auth token (long string attacker can’t guess

associated with that user’s session)

Password Guessing

Attacks: Online & Offline

Guessing Attacks Against Passwords

• Online attack (web)

– Try passwords on a live system

– Usually rate-limited

Guessing Attacks Against Passwords

• Online attack (web)

– Try passwords on a live system

– Usually rate-limited

• Authenticating to a device is often similarly rate-limited

(e.g., iPhone PIN) using secure hardware

Guessing Attacks Against Passwords

• Offline attack (web)

– Try to guess passwords from a stolen copy of the password

store or password database

Guessing Attacks Against Passwords

• Offline attack (web)

– Try to guess passwords from a stolen copy of the password

store or password database

• Attacking a file encrypted using a key derived from a

password (e.g., with PBKDF2) is similar

• Attacker compromises database (e.g., via SQL injection)

– hash(“Blase”) =
$2a$04$iHdEgkI681VdDMc3f7edau9phRwORvhYjqWAIb7hb4B5uFJO1g4zi

$ = delimiter

2a = bcrypt

04 = 24 iterations (cost)

iHdEgkI681VdDMc3f7edau = 16 bytes of salt (radix-64 encoded)

9phRwORvhYjqWAIb7hb4B5uFJO1g4zi = 24 bytes of hash output (radix-64 encoded)

• Attacker makes guesses (from most likely/probable to the

least) and hashes those guesses

• Finds match → try on other sites

– Password reuse is a core problem

Offline Attack (In Practice)

80d561388725fa74f2d03cd16e1d687c

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885
4. h(“letmein”) = 0d107d09f5bbe40cade3de5c71e9e9b7

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885
4. h(“letmein”) = 0d107d09f5bbe40cade3de5c71e9e9b7
5. h(“p@ssw0rd”) = 0f359740bd1cda994f8b55330c86d845

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885
4. h(“letmein”) = 0d107d09f5bbe40cade3de5c71e9e9b7
5. h(“p@ssw0rd”) = 0f359740bd1cda994f8b55330c86d845
6. h(“Chic4go”) = 80d561388725fa74f2d03cd16e1d687c

Attack Model

Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Saranga Komanduri, Darya Kurilova,
Michelle L. Mazurek, William Melicher, Richard Shay. Measuring Real-World Accuracies and Biases in Modeling
Password Guessability. In Proc. USENIX Security Symposium, 2015.

Password Cracking

Statistical Metrics For Passwords

• Traditionally: Shannon entropy

• Recently: α-guesswork

• Disadvantages of statistical approaches

– Entropy does not consider human tendencies

– Usually no per-password estimates

– Huge sample required for accuracy (since many passwords are

related to each other)

– Does not model real-world attacks

Parameterized Guessability

• How many guesses a particular cracking algorithm with

particular training data would take to guess a password

Parameterized Guessability

Chic4go

Guess # 6

j@mesb0nd007!

Guess # 366,163,847,194

Parameterized Guessability

Guess # past cutoff

n(c$JZX!zKc^bIAX^N

Parameterized Guessability

Some Key Password-Cracking Approaches

• Brute force (or selective brute force)

• Wordlist

• Mangled wordlist

– Hashcat and John the Ripper

• Markov models

• Probabilistic Context-Free Grammar

• Deep learning

• In practice: manual, iterative updates

Wordlist

Super
Password
Chicago

Mangled Wordlist Attack

Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Rulelist

Mangled Wordlist Attack

Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Super1

Rulelist Guesses

Mangled Wordlist Attack

Wordlist Rulelist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Guesses

Super1
Password1

Mangled Wordlist Attack

Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Super1
Password1
Chicago1

Rulelist Guesses

Mangled Wordlist Attack

Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Super1
Password1
Chicago1
Super
P4ssword
Chic4go

Rulelist Guesses

Mangled Wordlist Attack

Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Super1
Password1
Chicago1
Super
P4ssword
Chic4go
super
password
chicago

Rulelist Guesses

Mangled Wordlist Attack

Wordlist

PGS (≈ 20,000,000)

Linkedin (≈ 60,000,000)

HIBP (≈ 500,000,000)

Example Wordlists and Rulelists

Wordlist Rulelist

PGS (≈ 20,000,000)

Linkedin (≈ 60,000,000)

HIBP (≈ 500,000,000)

Korelogic (≈ 5,000)

Megatron (≈ 15,000)

Generated2 (≈ 65,000)

Example Wordlists and Rulelists

Wordlist Rulelist

PGS (≈ 20,000,000)

Linkedin (≈ 60,000,000)

HIBP (≈ 500,000,000)

Korelogic (≈ 5,000)

Megatron (≈ 15,000)

Generated2 (≈ 65,000)

109 - 1015
guesses

Example Wordlists and Rulelists

Wordlist Rulelist

PGS (≈ 20,000,000)

Linkedin (≈ 60,000,000)

HIBP (≈ 500,000,000)

Korelogic (≈ 5,000)

Megatron (≈ 15,000)

Generated2 (≈ 65,000)

109 - 1015
guesses

+ Hackers’ private word/rule lists

Example Wordlists and Rulelists

• Wordlist mode requires:

– Wordlist (passwords and dictionary entries)

– Mangling rules

• Guesses variants of input wordlist

• Speed: Fast

• “JTR”

John the Ripper

John the Ripper

w
o

rd
list g

u
e
sse

s

ru
le

s

John the Ripper

uchicago

fun-dies

w
o

rd
list g

u
e
sse

s

ru
le

s

John the Ripper

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

w
o

rd
list g

u
e
sse

s

ru
le

s

uchicago

fun-dies

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

John the Ripper

w
o

rd
list g

u
e
sse

s

ru
le

s

uchicago

fun-dies

uchicago1

fun-dies1

g
u

e
sse

s

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

John the Ripper

w
o

rd
list

ru
le

s

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

uchicago

fun-dies

uchicago1

fun-dies1

uchicago

fun-di3s

John the Ripper

w
o

rd
list g

u
e
sse

s

ru
le

s

Hashcat

• Wordlist mode requires:

– Wordlist (passwords and dictionary entries)

– Mangling rules

• Guesses variants of input wordlist

• (Many other modes)

• Speed: Fast

Hashcat

w
o

rd
list g

u
e
sse

s

ru
le

s

Hashcat

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

w
o

rd
list g

u
e
sse

s

ru
le

s

w
o

rd
list

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

uchicago

uchicago1

uchicago

Hashcat

g
u

e
sse

s

ru
le

s

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

uchicago

uchicago1

uchicago

fun-dies

fun-dies1

fun-di3s

Hashcat

w
o

rd
list g

u
e
sse

s

ru
le

s

Hashcat Mangling-Rule Language

*05 O03 d '7

Switch the first and the sixth char;

Delete the first three chars;

Duplicate the whole word;

Truncate the word to length 7;

Hashcat Mangling-Rule Language

Hashcat (Other Modes)

• Mask attack (brute force within a specified character-class

structure)

• Combinator attacks

• Hybrid attacks

• Many more!

Markov Models

• Predicts future characters from previous

• Approach requires weighted data:

– Passwords

– Dictionaries

• Speed: Slow

• Smoothing is critical

Markov Models

chic4gooo

2-gram model (1 character of context):
[start] ➔ c (1.0)
4 ➔ g (1.0)
c ➔ h (0.5), 4 (0.5)
g ➔ o (1.0)
h ➔ i (1.0)
i ➔ c (1.0)
o ➔ o (0.67) [end] (0.33)

	Slide 1
	Slide 2: Who Am I?
	Slide 3: Or Am I?
	Slide 4: How (and why) do we authenticate users?
	Slide 5: This Lecture
	Slide 6: Authentication in the Abstract
	Slide 7: Authentication Use Cases
	Slide 8: How We Authenticate (1/2)
	Slide 9: How We Authenticate (2/2)
	Slide 10: Passwords
	Slide 11: Why Are Passwords So Prevalent?
	Slide 12: Why Are Passwords So Prevalent?
	Slide 13: Why Are Passwords So Prevalent?
	Slide 14: Attacks Against Passwords
	Slide 15: Attacks Against Passwords
	Slide 16: Attacks Against Passwords
	Slide 17: Some Breached Companies
	Slide 18: Data-Driven Statistical Attacks
	Slide 19: Let’s take a look at a breach!
	Slide 20: Have I Been Pwned (as of 2/19/24)
	Slide 21: Securely Storing Passwords (as a website/server)
	Slide 22: Hashing on one NVIDIA RTX 4090
	Slide 23: Storing Passwords
	Slide 24: Typical (Web) Account Creation
	Slide 25: Typical (Web) Authentication
	Slide 26: Password Guessing Attacks: Online & Offline
	Slide 27: Guessing Attacks Against Passwords
	Slide 28: Guessing Attacks Against Passwords
	Slide 29: Guessing Attacks Against Passwords
	Slide 30: Guessing Attacks Against Passwords
	Slide 31: Offline Attack (In Practice)
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Password Cracking
	Slide 40: Statistical Metrics For Passwords
	Slide 41: Parameterized Guessability
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Some Key Password-Cracking Approaches
	Slide 46: Mangled Wordlist Attack
	Slide 47: Mangled Wordlist Attack
	Slide 48: Mangled Wordlist Attack
	Slide 49: Mangled Wordlist Attack
	Slide 50: Mangled Wordlist Attack
	Slide 51: Mangled Wordlist Attack
	Slide 52: Mangled Wordlist Attack
	Slide 53: Example Wordlists and Rulelists
	Slide 54: Example Wordlists and Rulelists
	Slide 55: Example Wordlists and Rulelists
	Slide 56: Example Wordlists and Rulelists
	Slide 57: John the Ripper
	Slide 58: John the Ripper
	Slide 59: John the Ripper
	Slide 60: John the Ripper
	Slide 61: John the Ripper
	Slide 62: John the Ripper
	Slide 63: John the Ripper
	Slide 64: Hashcat
	Slide 65: Hashcat
	Slide 66: Hashcat
	Slide 67: Hashcat
	Slide 68: Hashcat
	Slide 69: Hashcat Mangling-Rule Language
	Slide 70: Hashcat Mangling-Rule Language
	Slide 71: Hashcat (Other Modes)
	Slide 72: Markov Models
	Slide 73: Markov Models

