# Privacy & Anonymity CMSC 23200, Spring 2025, Lecture 14

#### Grant Ho

University of Chicago, 05/08/2025 (Slides adapted from Peyrin Kao, Vern Paxson, and Zakir Durumeric)

## Logistics

- Assignment 5 released either Fri / Sat (May 9 / 10)
  - Due Thursday, May 15 by 11:59pm
- Next week:
  - TA Office Hours as scheduled
  - Final Discussion section next week (May 14)
  - Instructor Office Hours on May 12: cancelled
  - Lecture #15 by David Cash

#### **Outline**

- Privacy vs. Anonymity vs. Confidentiality
- Proxies & VPNs
- Tor
  - Overview & Design
  - Tor: Attacks & Additional Defenses/Services
  - Tor in Practice

# What is Privacy?

#### Many different definitions:

- Privacy is control over your own information. Freedom from intrusion into personal matters
- Privacy is a person's right or expectation to control the disclosure of his/her personal information, including activity metadata
- Privacy is the "right to be let alone" Louis Brandeis

# Violations of Privacy

#### Last class:

 How can web attackers (websites) violate privacy by tracking what sites & content you interact with?

#### Today:

 How can network attackers track what sites / who you're communicating with on the Internet?

# Anonymity: Related Concept

Anonymity ("without a name"): Concealing your identity

- Anonymous communication: the identity of source & destination in communication are concealed
- Anonymity provides some forms of privacy (e.g., unlinkability: prevents attackers from knowing action/information = yours, etc.)

#### Anonymity is not confidentiality

- Confidentiality hides the contents of the communication
- Anonymity hides the identities of who is communicating with whom

# Metadata & Anonymity

TLS only protects content... doesn't offer anonymity or complete privacy

#### **Anonymity often requires protecting metadata:**

- Who is visiting what websites? Who is sending messages to whom?
  - Gov't might not like that you're visiting Human Rights Watch website
  - Gov't might not be amused that you're sending messages to Human Rights Watch
- We may want to hide the existence of the message (maybe sending an encrypted message at all is going to cause you problems)

# Achieving Anonymity is Difficult

- Difficult, if not impossible, to achieve on your own
  - Source and destination IP address visible in every packet
- Anonymity is easier for attackers
  - An attacker can hack into someone else's computer and/or often spoof messages from fake source addresses!
  - Benign users don't usually do these things
- Main strategy for anonymity: Ask someone else to send messages for you

#### **Outline**

- Privacy vs. Anonymity vs. Confidentiality
- Proxies & VPNs
- Tor
  - Overview & Design
  - Tor: Attacks & Additional Defenses/Services
  - Tor in Practice

#### **Proxies**

- Goal & Threat Model: Alice wants to anonymously send a message to Bob
  - Bob shouldn't know the message is from Alice
  - An eavesdropper (Eve) cannot deduce that Alice is talking to Bob
- Proxy: A third party that relays Internet traffic
  - Alice sends the message and the recipient (Bob) to the proxy, and the proxy forwards the message to Bob (along with many other src + dest pairs)
    - The recipient's name (and optionally the message) is encrypted, so an eavesdropper looking at packets can't see both msg src & dest
  - Bob receives the message from the proxy, with no indication it came from Alice



# Virtual Private Networks (VPNs)

**VPNs**: A virtual connection to an internal network

- Creates encrypted "tunnel" to VPN server at the Network / IP layer
- Traffic from client first encrypted & sent to VPN server
- VPN server then decrypts & forwards traffic to final destination
- VPNs act as a proxy into internal network: outbound traffic appears to come from internal network and not Alice



# Naive anonymity approach .... VPNs



# Naive approach .... VPNs



#### Lulzsec fiasco

Posted on September 23, 2011

We have received concerns by users that our VPN service was utilized by a member or members of the hacktivist group 'lulzsec'. Lulzsec have been ALLEGEDLY been responsible for a number of high profile cases such as:

- The hacking of the Sony Playstation network which compromised the names, passwords, e-mail addresses, home addresses and dates of birth of thousands of people.
- The DDOS attack which knocked the British governments SOCA (Serious Organised Crime Agency) and other government websites offline.
- The release of various sensitive and confidential information from companies such as AT&T, Viacom, Disney, EMI, NBC Universal, and AOL.
- Gaining access to NATO servers and releasing documents regarding the communication and information services (CIS) in Kosovo.
- The defacement of British newspaper websites The Sun & The Times.
- The hacking of 77 law enforcement sheriff websites.

# Naive approach .... VPNs



#### Lulzsec fiasco

Posted on September 23, 2011

We have received concerns by hacktivist group 'lulzsec'. Lulzse such as:

"...received a **court order** asking for information relating to an account associated with some or all of the above cases. As stated in our terms of service and **privacy policy** our service is not to be used for illegal activity, and as a legitimate company **we will cooperate with law enforcement if we receive a court order**"

- The hacking of the Sony Playstation network which compromised the names, passwords, e-mail addresses, home addresses and dates of birth of thousands of people.
- The DDOS attack which knocked the British governments SOCA (Serious Organised Crime Agency) and other government websites offline.
- The release of various sensitive and confidential information from companies such as AT&T, Viacom, Disney, EMI, NBC Universal, and AOL.
- Gaining access to NATO servers and releasing documents regarding the communication and information services (CIS) in Kosovo.
- . The deforement of British newspaper websites The Sun & The Times

#### Proxies and VPNs: Issues

- Trusting the proxy
  - The proxy can see the sender and recipient's identities
  - Attackers might convince the proxy to tell them about your identity – or the proxy itself could be an attacker!
- Performance
  - Sending a packet requires additional hops across the network
- Cost
  - VPNs can cost \$80 to \$200 per year

#### **Outline**

- Privacy vs. Anonymity vs. Confidentiality
- Proxies & VPNs
- Tor
  - Overview & Design
  - Tor: Attacks & Additional Defenses/Services
  - Tor in Practice



2013

- Tor is a successful privacy enhancing technology that works at the transport layer
- Millions of active users.
- Provides anonymous TCP connections (conceals your and/or destination IP address)



2015

2017

2019

# Tor ("The Onion Router")

**Idea:** Send the packet through multiple proxies instead of just one proxy

• Tor: A network that uses cryptography + multiple proxies (relays or "onion routers") to enable anonymous communications

#### Key components of Tor:

- Network of many Tor relays (proxies) for forwarding packets
- Directory server: Lists all Tor relays and their public keys
- Tor Browser: A web browser configured to connect to the Tor network
- Tor onion services: Servers that can only be reached through the Tor network
- Tor bridges: relays that try to hide the fact that a user is connecting to the Tor network



# Tor ("The Onion Router")



#### Tor Threat Model & Goals

- Security: Client anonymity and censorship resistance
  - Optional: Server anonymity with onion (hidden) services
- Tor preserves anonymity against local adversaries
  - Example: An on-path attacker sees Alice send a message to a Tor relay, but not the final destination of the message
  - Example: The server should not know the identity of the client based solely on network layer info
- Performance: Low latency (communication should be fast)

# Internet Censorship

Pervasive censorship Substantial censorship Selective censorship Changing situation Little or no censorship



#### **Example Censorship Threat Model**



#### Tor Protocol: Tor Circuits

To communicate anonymously with a server, the Tor client forms a **circuit** consisting of 3 relays (by default)

- 1. Query the directory server for a list of relays (lists all relays & their PK)
- 2. Choose 3 relays to form a Tor circuit
- 3. Connect to the 1<sup>st</sup> relay, forming an end-to-end TLS connection
- 4. Connect to the  $2^{nd}$  relay *through* the  $1^{st}$  relay, using end-to-end TLS connection
- 5. Connect to the 3<sup>rd</sup> relay *through* the 2<sup>nd</sup> relay, using end-to-end TLS connection
- 6. Connect to the web server through 3<sup>rd</sup> relay using HTTPS (so an end-to-end TLS connection is formed through the third relay)

# Tor Circuits: Walkthrough



## Tor Protocol: What a Relay Does

#### Runs a Tor relay application (software) that:

- 1. Listens for someone to initiate a TLS connection
- 2. When receiving a packet, decrypts using the key obtained through TLS (or encrypts if reverse direction)
- 3. Forwards the packet to its next hop / destination

## Tor Circuits: Walkthrough



Suppose Alice wants to talk to Bob anonymously.

Alice queries Tor's directory servers and chooses 3 relays: Relay #1 (Entry Node), Relay #2, and Relay #3 (Exit Node)

The directory servers publish a public key for each Relay node

## Tor Circuits Setup



# Recall: Proxy Message Encryption

- Alice wants to send a message to Bob
- She encrypts the recipient's name (and message) so an eavesdropper does not see a packet with both Alice and Bob's identities in plaintext



#### Tor Packet Construction

Wrap the packets via encryption: fixed size "cells" of 512 bytes

• e.g., the packet sent to Bob is encrypted under  $K_3$  since Relay 3 is the one to forward that information to Bob

Ensures that no one can read or tamper with the messages, since these are all sent over TLS connections





# Tor Circuits: Walkthrough



#### Tor Packet Construction

What does Relay 1 see?



All Relay 1 knows is the message came from Alice and is going to Relay 2. They don't know Alice is talking to Bob!



# Tor Circuits: Walkthrough



#### Tor Packet Construction

What does Relay 2 see?



All Relay 2 knows is the message came from Relay 1 and is going to Relay 3. They know nothing about Alice and Bob!



# Tor Circuits: Walkthrough



#### Tor Packet Construction

• What does Relay 3 see?



All Relay 3 knows is the message came from Relay 2 and is going to Bob. They don't know Alice sent the message!



# Tor Circuits: Walkthrough



## Tor Circuits: Walkthrough



### Tor Exit Nodes

 The exit node can see the message and the recipient (but not the sender)

- The exit node is a man-in-the-middle attacker
  - If the user is not using encryption (TLS) to connect to the end host, the exit node can see and modify the traffic
  - If the user is using TLS (using HTTPS), the exit node cannot see or tamper with the traffic

### Tor Exit Nodes in Practice

- Administrators of Tor exit nodes often receive abuse complaints
  - Users complain to the exit node
  - Users complain to the Internet service provider (ISP), which complains to the exit node
  - Legal problems: illegal activity traced to exit node first
- As a result, most Tor relays choose to only be entry or intermediate nodes, not exit nodes
  - Exit node bandwidth is the bottleneck in Tor, not internal bandwidth

## Outline

- Privacy vs. Anonymity vs. Confidentiality
- Proxies & VPNs
- Tor
  - Overview & Design
  - Tor: Attacks & Additional Defenses/Services
  - Tor in Practice

## Tor Weaknesses: Timing Attacks (Side Channel)

A network attacker who has a full (global) view of the network can learn that Alice and Bob are talking

 Timing attack: Observe when Alice sends a message, when Bob receives a message, and link the two together

Global adversaries are *outside* of Tor's threat model and are not defended against

- Tor only defends against local adversaries with partial views of the network
- Timing attacks could be defended against by delaying the timing of packets,
   but would lead to poor/unusable performance

### Tor Weaknesses: Collusion

- Collusion: Multiple nodes working together & sharing info
  - Collusion is adversarial (dishonest) behavior
  - o If all nodes in the circuit collude, anonymity is broken
  - If at least one node in the circuit is honest, anonymity is preserved
  - An attacker can create hundreds of nodes in the Tor network to increase the chance that your circuit consists entirely of the attacker's nodes!
- Defense: The more nodes we use, less likely they are not all colluding
  - It's much harder for 10 nodes to collude than for 2 nodes to collude
  - 3 nodes is generally considered good enough & is the default

## Tor Weaknesses: Collusion Defense

### Defense: Guard nodes

- Guard nodes must have a high reputation and must have existed for a long time
- Clients will always use a guard node as the entry node (by default) & the same guard node is used for a long period of time
  - Attackers' nodes are unlikely to become guard nodes
  - Because clients use the same guard nodes for a long period of time, there is only a low chance that the client will switch to an attacker's guard node

## Tor Weaknesses: Distinguishable Traffic

- Tor does not hide the fact that you are using Tor
  - Example: A local adversary can see that you are sending packets to a Tor relay
  - Tor directory publishes all relay nodes for any client
- Anonymity only works in a crowd
  - Example: A Harvard student sent an anonymous bomb threat using Tor. The administrators noticed that only one student on the Harvard network used Tor at that time!

## Tor Weaknesses: Distinguishable Traffic

### Defense: Tor bridges

- Attackers can tell you are using Tor because they can see you are connecting to an entry node
- Tor bridges: entry nodes that are not available on public lists
  - Users request bridges from a separate directory, which only gives a few bridges to a user
  - Prevents attackers from enumerating all bridges unless they have many different IP addresses running Tor clients

## Tor Weaknesses: Distinguishable Traffic

With Tor bridges, censors can no longer block Tor based on IP addresses of entry/relay nodes

 But they can still distinguish traffic that looks like Tor traffic from normal traffic (fixed sized packets with TLS)

### Defense: Pluggable transports

- Pluggable transports change the appearance of the client's traffic to the entry node (only for bridges)
- Obfuscates the encrypted traffic to make it "look" more like normal Internet traffic (no longer obvious fixed size packets)

## Tor Hidden (Onion) Services

- Sometimes, the server wants to be anonymous, so no one knows where the server is located
- Tor onion services: Websites that are only accessible through the Tor network
  - Gives the server anonymity protection
  - Sometimes called the dark web
- Idea: Route the server's traffic through the Tor network so that no one knows who the server is

## **Tor Onion Services**

- Connecting to onion services is a little more complicated:
  - Client has to know where to send packets, but server is trying to be anonymous
- Solution: rendezvous point a relay node that will connect two circuits from different directions
  - Client connects to rendezvous point over a Tor circuit
  - Server connects to rendezvous point over a Tor circuit
  - Rendezvous point relays packets between these two circuits
  - Security: rendezvous point does not learn the identity of the client or of the server, so can't reveal either identity to the other

## **Outline**

- Privacy vs. Anonymity vs. Confidentiality
- Proxies & VPNs
- Tor
  - Overview & Design
  - Tor: Attacks & Additional Defenses/Services
  - Tor in Practice

### Tor Tradeoffs

#### Benefit: Free to use

- Tor is mostly funded by the US government
- Users "pay" by providing traffic for other users to hide in (recall: you don't want to be the only user on the network using Tor)

#### Drawback: Performance

 Latency is significantly worse: Packets need to make more hops across the network

### Drawback: Full anonymity requires usability tradeoffs

- No cookies by default (even final server doesn't know you)
- They even recommend keeping the browser window size constant, which can be annoying!

# Internet Censorship & Tor

- Government censors
  - Block websites containing "offensive" content
  - Commonly employ blocklist approach
- Because Tor hides the sites a user is connecting to, it is useful & popular for bypassing censorship
  - Functions similarly to bypassing censorship using a VPN or proxy
- Problem: Constant arms race b/t Tor & censors

## Arms Race: Tor vs. Censorship

- Censors can easily block access to all public Tor entry points
  - Bridge services provide a set of entry points that aren't listed publicly anywhere, so they can't be blocked by IP
- Censors can block traffic that looks like Tor traffic
  - Pluggable transports make traffic look more like normal web traffic
- Censors can pretend to be a Tor client to see if a host is a Tor entry/bridge node & then block connections to it
  - Some pluggable transports use cloud services (like Google Cloud Platform, Amazon Web Services, etc.): harder to block

## Hosting Illegal Services on Tor



Welcome now0pen! messages(0) | orders(0) | account(#0) | settings | log out

#### Tor onion service

- Legitimate
- Most coun web

Dark markets: M

- Transactio
  - Service
- Ratings sys
- Escrow ser
- Can only b





Lab Supplies(6) Digital goods(98)

Services(48) Money(55)

Weaponry(15) Home & Garden(14)

Food(4) Electronics(5)

Books(49)

paraphernalia(28)

XXX(30) Medical(3)

Computer equipment(4)

Apparel(4) Musical

instruments(2) Tickets(1) Forgeries(13)



5 Marijuana Butter Chocolate Chip...

**B8.53** 





4 x 20MG Original Lily Cialis





to US 1/4 lb (qp) BC Master Kush... **B121.37** 



4mg. TIZANIDINE (zanaflex) x25 **B2.09** 



(1g) High-grade Crystal





How to Grow Mushrooms

B0.14



\*\*\*US customers only\*\*\* Express...

**B2.79** 



MindFood - Protect your brain!...

**\$3.69** 



Mushroom Indoor Growing - Easy ... ₿0.29

#### News:

- · Escrow hedging update
- New feature to help protect sellers

search | \mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mod}\mod{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\ma

- · We are hiring! Get paid for a referral, too...
- Reclaim lost coins from MyBitcoin.com
- · Seller ranking and feedback overhaul
- · Change your Mt. Gox password

ervices

ted on regular

und the world

Bitcoin

recent feedback:

### Modern Dark Markets

Hard to find information about where dark markets are located

- Legitimate websites (e.g., Reddit) will remove dark market links
- Legitimate websites with information about dark markets (e.g., DeepDotWeb) get taken down
- Information about dark markets is usually available through Tor onion services (e.g., Dread, a Reddit clone)

## Summary: Anonymity & Tor

- Anonymity (concealing one's identity) can be difficult to achieve on the web
  - Different from standard confidentiality
- Proxies and VPNs relay traffic through a single machine: weak anonymity
  - The proxy knows who you are and what you are doing: not anonymous!
- Tor encrypts & routes your traffic through multiple machines
  - Circuits are established by performing TLS handshakes with three nodes, nested onion of encryption (no one knows full end-to-end)

## Summary: Anonymity & Tor

### Tor does have a few weaknesses

- Weakness: Timing attacks + global adversaries (not defended)
- Weakness: Collusion between nodes can deanonymize users by working together
  - Defense: Guard relays & multiple relays in circuits
- Weakness: Tor traffic is distinguishable from normal traffic, allowing it to be censored and blocked
  - Defense: Bridges and pluggable transports
- Worse performance & Tor itself/usage sometimes has poor reputation

## Summary: Anonymity & Tor

Onion services provide anonymity for the server, in addition to the client

## Tor in practice

- Often used to evade censorship -- Tor and censors are in a constant arms race
- Illegal services often use Tor because it conceals their identity from authorities