
Grant Ho

How the Web Works
CMSC 23200, Spring 2025, Lecture 11

University of Chicago, 04/29/2025

(Slides adapted from Blasé Ur, Vern Paxson, and Zakir Durumeric)

Logistics

- Discussion Section #4 this Wednesday (04/30)

- Assignment 4 due Friday at 11:59pm (5/2)

- Start early!

- See my Ed post for some tips & debugging notes

Outline

- Web Overview

- Navigating the Web

- Webpage Structure & Contents

- Web Security Threat Models

- Same Origin Policy

Web Browsing

• Previously: Networking = how do route desired packets

between clients <-> servers on the Internet

• The web: structured content (desired packets) on the

Internet hosted by web servers and typically accessed

by web browsers (clients)

A 10,000 Foot View of Technologies

• Where things run:

HTTP(S)

HTML / CSS

JavaScript
(Angular/React)

Browser Extensions

Django (Python) / CGI (Perl) /
PHP / Node.js / Ruby on Rails

Databases (MySQL)

Outline

- Web Overview

- Navigating the Web

- Webpage Structure & Contents

- Web Security Threat Models

- Same Origin Policy

HTTP (Hypertext Transfer Protocol)

• ASCII protocol from 1989 that allows fetching resources

(e.g., HTML file) from a server over TCP

– Two messages: request (client -> server) and

 response (server -> client)

– Stateless protocol beyond a single request + response

• Every resource has a uniform resource location (URL)

HTTP: Application Layer

Application

Transport

Network

Data link

PhysicalL1

L2

L3

L4

L7 SMTP HTTP DNS NTP

TCP UDP

IP

Ethernet FDDI PPP

optical copper radio PSTNHow do I physically transmit bits?
(electrical, optical, or radio signals)

Transmit data to the next hop
(between two nodes in the network)

Packet forwarding: Getting data to its final
destination, even w/ many hops along the way

Enable sending/receiving multiple connections
(handling multiple services/processes)From: 20:61:84:3a:a9:52

To: 6d:36:ff:4a:32:92

From: 1.2.3.4
To: 5.6.7.8

From: Port 1234
To: Port 80

GET / HTTP/1.1
...

The Anatomy of a URL (Web Resource Address)

• https://www.uchicago.edu/fun/funthings.html?query=music

&year=2024#topsection

– Scheme (Protocol): https

– Hostname: www.uchicago.edu

– Path: /fun/funthings.html

– Parameters: (key=value pairs, follow “?” and delimited with “&”)

– Named anchor: #topsection (used only by client/browser)

HTTP Request: Client Msg to Server

• Start line: method, target (path), protocol version

– GET /index.html HTTP/1.1

– Method: GET, PUT, POST, HEAD, OPTIONS

• HTTP Headers (Key: Value pairs)

– Host, User-agent, Referer, many others
– https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

• Body (not needed for certain methods, e.g., GET)

• In Firefox: F12, “Network” to see HTTP requests

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

HTTP Request

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Host: www.example.com

Referer: http://www.google.com?q=dingbats

Headers

method
pat

h
version

Start Line

Body (Empty)

HTTP GET vs. POST

HTTP Request

POST /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Host: www.example.com

Referer: http://www.google.com?q=dingbats

method path version

Headers

Body
Name: Blasé Ur

Organization: University of Chicago

Start Line

HTTP Request Methods

• GET: Get the resource at the specified URL & encode data at
 the end of the URL (does not accept message body)

• POST: Create new resource at URL with payload (body)

• PUT: Replace target resource with request payload

• PATCH: Update part of the resource

• DELETE: Delete the specified URL

HTTP Request Methods

• Not all methods are created equal — some have different security protections

• GETs should not change server state; in practice, some servers do perform side effects

• Old browsers don’t support PUT, PATCH, and DELETE

– Most requests with a side affect are POSTs today

– Real method hidden in a header or request body

– Never do…

– GET http://bank.com/transfer?fromAcct=X&toAcct=Y&amount=1000

HTTP Response: Server Msg to Client

• Status: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

– 200 (OK)

– 404 (not found)

– 301 (moved permanently)

– 302 (moved temporarily)

• HTTP Headers

• Body

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

HTTP Response

HTTP Response

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT

Content-Length: 2543

<html>Some data... announcement! ... </html>

headers

body

status

code

HTTP: Request & Response

From https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

Sent by clients (e.g., browsers) Sent by web servers,
in response to a request

HTTP → Website

• When you load a site, your web browser sends a GET
request to that website

http://example.com

GET /index.html
https://www.uchicago.edu/

uchicago.edu

1. DNS resolves www.uchicago.edu ->
IP address (e.g., 128.135.164.125)

2. Browser: HTTP GET request to IP addr
for the default file: index.html
(since no path specified)

http://www.uchicago.edu/

HTTP is Stateless

HTTP Response

HTTP/1.0 200 OK

Content-Type: text/html

<html>Some data... </html>

HTTP Request

GET /index.html HTTP/1.1

If HTTP is stateless, how do we have website sessions?

HTTP Cookies

HTTP cookie: a small piece of data that servers send to clients

• Enables persistent state / web browsing sessions

• The client (browser) may store and send back in future requests to that site

Session Management

• Logins, shopping carts, game scores, or any other session state

Personalization

• User preferences, themes, and other settings

Tracking

• Recording and analyzing user behavior

Keeping State Using Cookies

• Server Sends: Set-Cookie HTTP header

• Client Sends w/ Each Request: Cookie HTTP header

– Cookie: name=value; name2=value2; name3=value3

• Cookies are automatically sent with all requests your web

browser makes

• Cookies are bound to an origin (only sent to servers w/

matching origin)

Setting Cookie
HTTP Response

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0

Connection: keep-alive

Content-Type: text/html

Set-Cookie: trackingID=3272923427328234

Set-Cookie: userID=F3D947C2

Content-Length: 2543

<html>Some data... whatever ... </html>

Server uses
“Set-Cookie”
HTTP Header

Sending Cookies

HTTP Request

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Cookie: trackingID=3272923427328234

Cookie: userID=F3D947C2

Referer: http://www.google.com?q=dingbats

Cookies are
automatically
sent with all
requests your
browser
makes!

Authorization Tokens = Cookies

• You log into a website, and it presents you an authorization
token (typically a hash of some secret)

• Subsequent HTTP requests automatically embed this
authorization token

• Session cookies (until you close your browser) vs. persistent
cookies (until the expiration date)

• View cookies: “Application” tab in Chrome developer tools,
“Storage” in Firefox

Login Session w/ Cookies

GET /loginform HTTP/1.1

cookies: []

HTTP/1.0 200 OK
cookies: []

<html><form>…</form></html>POST /login HTTP/1.1

cookies: []

username: Blase

password: chicago4life

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>

GET /account HTTP/1.1

cookies: [session: e82a7b92]

GET /img/user.jpg HTTP/1.1

cookies: [session: e82a7b92]

HTTPS: Protecting HTTP Data Over the Network

• Simply an extension where HTTP data sent over TLS!

– That is, TCP payload = HTTP request and response are encrypted

• Which CAs (certificate authorities) does your browser trust?

– Firefox: Options → Privacy & Security → (all the way at the

bottom) View Certificates

Outline

- Web Overview

- Navigating the Web

- Structure & Contents of Webpages

- Web Security Threat Models

- Same Origin Policy

The Anatomy of a Webpage

• HTML (hypertext markup language)

– Language to create structured documents (webpages)

– Uses tags <> to define elements on the page

• All sorts of formatting tags: <div><p>Hi</p></div>

• Links: Click here

• Pictures:

• Forms

• Audio/video

The Anatomy of a Webpage

view-source:https://www.cs.uchicago.edu/

CSS (Cascading Style Sheets)

Language used for describing the presentation (“style”)

of a document

index.css

p.serif {
font-family: "Times New Roman", Times, serif;
}
p.sansserif {
font-family: Arial, Helvetica, sans-serif;
}

DOM (document object model)

Cross-platform model for

representing and interacting with

objects in HTML

• Represent a document

(webpage) as a tree object w/

properties (HTML elements)

• Browser takes HTML ->

structured data (DOM)

Inline Frames (iFrames)

• Beyond loading individual resources,
websites can also load other websites within
their window

– iFrame: floating inline frame

– Allows delegating screen area to content
from another source (e.g., ads)

– Frame isolation: inner & outer pages cannot
modify each other’s content

https://a.com

b.com

c.com
a.com

d.com

<iframe src="URL"></iframe>

Creating Interactive Pages

• JavaScript!

– The core idea: Let’s run code on the client’s computer

• Incredibly powerful scripting language that’s
interpreted/compiled & run inside of the browser:

– Math, variables, control structures

– Modify the DOM

– Access browser data & hardware

– Issue network requests for data (e.g., through AJAX)

– Can be multi-threaded (web workers)

Common Javascript Libraries

• JQuery (easier to specify access to DOM)

– $(".test").hide() hides all elements with class="test"

• JQueryUI

• Bootstrap

• Angular / React

• Google Analytics (sigh)

Importing Javascript Libraries

Sub-resource Integrity

• Sub-resource integrity (SRI): Validate that the resource your

website loads on clients matches what you expect

– New “integrity” attribute for certain HTML tags

• Website creator computes hash of expected resource, and adds

SRI integrity attribute to resource tags in their HTML

– cat FILENAME.js | openssl dgst -sha384 -binary | openssl base64 –A

– <script src=“https://example.com/FILENAME.js” integrity=“sha384-
oqVuAfXRKap...x4JwY8wC”></script>

https://example.com/example-framework.js

Basic Browser Execution Model (Page

Rendering)
• Each browser window….

– Loads content of root page

– Parses HTML and runs included Javascript

– Fetches additional resources (e.g., images, CSS, Javascript, iframes)

– Responds to events like onClick, onMouseover, onLoad, setTimeout

– Iterate until the page is done loading (which might be never)

Page Rendering

page

HTML

CSS

Javascript

HTML Parser

CSS Parser

JS Engine

DOM

modifications to

the DOM

Painter

bitmap

Event Listener

Outline

- Web Overview

- Navigating the Web

- Webpage Structure & Contents

- Web Security Threat Models

- Same Origin Policy

Web Attack Models

Malicious Website

Web Attack Models

Malicious Website Malicious External Resource

Desirable security goals

• Integrity: a malicious website should not be able to tamper with

integrity of our computers or our information on other web sites

• Confidentiality: malicious web sites should not be able to learn

confidential information from our computers or other web sites

• Privacy: malicious web sites should not be able to spy on us or

our online activities

• Availability: malicious parties should not be able to keep us from

accessing our web resources

Security on the web

• Risk #1: we don’t want a malicious site to be able

to trash files/programs on our computers

– Browsing to awesomevids.com (or evil.com) should

not infect our computers with malware (malicious

software), read or write files on our computers, etc.

Security on the web

• Risk #1: we don’t want a malicious site to be able

to trash files/programs on our computers

– Browsing to awesomevids.com (or evil.com) should

not infect our computers with malware, read or write

files on our computers, etc.

• Defenses: Javascript is sandboxed;

try to avoid security bugs in browser code;

privilege separation; automatic updates.

Security on the web

• Risk #2: we don’t want a malicious site to be able

to spy on or tamper with our information or

interactions with other websites

– Browsing to evil.com should not let evil.com spy on

our emails in Gmail or buy stuff with our Amazon

accounts

Security on the web

• Risk #2: we don’t want a malicious site to be able

to spy on or tamper with our information or

interactions with other websites

– Browsing to evil.com should not let evil.com spy on

our emails in Gmail or buy stuff with our Amazon

accounts

• Defense: the same-origin policy

– A security policy grafted on after-the-fact, and

enforced by web browsers

Security on the web

• Risk #3: we want data stored on a web server to

be protected from unauthorized access

Security on the web

• Risk #3: we want data stored on a web server to be

protected from unauthorized access

• Defense: server-side security

(e.g., web-app security, as well as access control,

software security, firewalls, etc.)

Outline

- Web Overview

- Navigating the Web

- Webpage Structure & Contents

- Web Security Threat Models

- Same Origin Policy

Same-Origin Policy (SOP): Core Web Defense

• Goal: prevent one website from tampering with other

unrelated websites (malicious DOM access)

– Enforced by the web browser

• Origin [DOM]: exact triplet of (URI scheme, host name,

port)

• SOP: Content, such as scripts, from different origins cannot

interact with each other

– Javascript inherits origin of the frame that loaded it

Bounding Origins — Windows
• Every Window and Frame has an origin

• Origins are blocked from accessing other origin’s objects

http://example.combank.com http://example.comattacker.com

attacker.com cannot…

- read or write content from bank.com tab

- read or write bank.com's cookies

- detect that the other tab has bank.com loaded

Assessing SOP

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/

http://wikipedia.org/ http://www.wikipedia.org/

http://wikipedia.org/ https://wikipedia.org/

http://wikipedia.org:81/ http://wikipedia.org:82/

http://wikipedia.org:81/ http://wikipedia.org/

except !

SOP for HTTP Responses

• Pages can make requests across origins

http://example.com

GET /img/usr.jpg

bank.com

SOP does not prevent attacker.com from making the HTTP request to the server

attacker.com

http://attacker.com/
http://attacker.com

Origins and Cookies

http://example.comattacker.com

http://example.combank.com

POST /login

GET /img/usr.jpg

bank.com

Browser will send bank.com cookie

SOP blocks attacker.com from inspecting bank.com's image and cookie

SOP for Other HTTP Resources
• Images: Browser renders cross-origin images, but SOP prevents page from

inspecting individual pixels. Can check size and if loaded successfully.

• CSS, Fonts: Similar — can load and use, but not directly inspect

• Frames: Can load cross-origin HTML in frames, but cannot inspect or modify

the frame content. Cannot check success for Frames.

https://a.com

bank.com

attacker.com

attacker.com
bank.com

Script Execution

Scripts can be loaded from other origins. Scripts execute with the
privileges of their parent frame/window’s origin.
Parent can call functions in script.

<script src=“/js/jquery.min.js”></script>

bank.com

<script src="jquery.com/jquery.min.js"></script>

bank.com

✓ You can load library
from CDN and use it
to alter your page

❌ If you load a malicious
library, it can also steal
your data (e.g.,
cookies)

Relaxing SOP

Frames - Domain Relaxation

http://example.com

Frame A

Origin: cdn.facebook.com

facebook.com

These frames
cannot access
each other’s DOM!

Domain Relaxation

You can change your document.domain to be a super-

domain

a.domain.com → domain.com OK

b.domain.com → domain.com OK

a.domain.com → com NOT OK

a.doin.co.uk → co.uk NOT OK

Cross-Origin Resource Sharing

(CORS)

Let’s say you have a web application running at

app.company.com and you want to access JSON data by

making requests to api.company-internal.com.

By default, this wouldn't be possible — app.company.com and

api.company-internal.com are different origins!

CORS (Relaxes SOP)

• Cross-Origin Resource Sharing

– HTTP Headers that specify when other origins can make a

request for data on a different origin

• Server on “a.com” can use CORS headers in its HTTP response:

– Access-Control-Allow-Origin: https://b.com

– Access-Control-Allow-Methods: POST, GET, OPTIONS

– Access-Control-Allow-Headers: X-PINGOTHER, Content-Type

– …

When CORS is Needed

From https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

	Slide 1: How the Web Works CMSC 23200, Spring 2025, Lecture 11
	Slide 2: Logistics
	Slide 3: Outline
	Slide 4: Web Browsing
	Slide 5: A 10,000 Foot View of Technologies
	Slide 6: Outline
	Slide 7: HTTP (Hypertext Transfer Protocol)
	Slide 8: HTTP: Application Layer
	Slide 9: The Anatomy of a URL (Web Resource Address)
	Slide 10: HTTP Request: Client Msg to Server
	Slide 11: HTTP Request
	Slide 12: HTTP GET vs. POST
	Slide 13: HTTP Request Methods
	Slide 14: HTTP Request Methods
	Slide 15: HTTP Response: Server Msg to Client
	Slide 16: HTTP Response
	Slide 17: HTTP: Request & Response
	Slide 18: HTTP → Website
	Slide 19: HTTP is Stateless
	Slide 20: HTTP Cookies
	Slide 21: Keeping State Using Cookies
	Slide 23: Setting Cookie
	Slide 24: Sending Cookies
	Slide 25: Authorization Tokens = Cookies
	Slide 26: Login Session w/ Cookies
	Slide 27: HTTPS: Protecting HTTP Data Over the Network
	Slide 28: Outline
	Slide 29: The Anatomy of a Webpage
	Slide 30: The Anatomy of a Webpage
	Slide 31: CSS (Cascading Style Sheets)
	Slide 32: DOM (document object model)
	Slide 33: Inline Frames (iFrames)
	Slide 34: Creating Interactive Pages
	Slide 35: Common Javascript Libraries
	Slide 36: Importing Javascript Libraries
	Slide 37: Sub-resource Integrity
	Slide 38: Basic Browser Execution Model (Page Rendering)
	Slide 39: Page Rendering
	Slide 40: Outline
	Slide 41: Web Attack Models
	Slide 42: Web Attack Models
	Slide 43: Desirable security goals
	Slide 44: Security on the web
	Slide 45: Security on the web
	Slide 46: Security on the web
	Slide 47: Security on the web
	Slide 48: Security on the web
	Slide 49: Security on the web
	Slide 50: Outline
	Slide 51: Same-Origin Policy (SOP): Core Web Defense
	Slide 52: Bounding Origins — Windows
	Slide 53: Assessing SOP
	Slide 54: SOP for HTTP Responses
	Slide 55: Origins and Cookies
	Slide 56: SOP for Other HTTP Resources
	Slide 57: Script Execution
	Slide 58: Relaxing SOP
	Slide 59: Frames - Domain Relaxation
	Slide 60: Domain Relaxation
	Slide 61: Cross-Origin Resource Sharing (CORS)
	Slide 62: CORS (Relaxes SOP)
	Slide 63: When CORS is Needed

