How the Web Works
CMSC 23200, Spring 2025, Lecture 11

Grant Ho

University of Chicago, 04/29/2025
(Slides adapted from Blasé Ur, Vern Paxson, and Zakir Durumeric)

Logistics
- Discussion Section #4 this Wednesday (04/30)

- Assignment 4 due Friday at 11:59pm (5/2)

- Start early!
- See my Ed post for some tips & debugging notes

Outline

Web Overview
Navigating the Web

Webpage Structure & Contents

Web Security Threat Models
Same Origin Policy

Web Browsing

* Previously: Networking = how do route desired packets
between clients <-> servers on the Internet

* The web: structured content (desired packets) on the
Internet hosted by web servers and typically accessed
by web browsers (clients)

A 10,000 Foot View of Technologies

* Where things run:

HTML / CSS

| Django (Python) / CGI (Perl) /
JavaScript PHP / Node.js / Ruby on Rails
(Angular/React)

Browser Extensions Databases (MySQL)

Outline

Web Overview
Navigating the Web

Webpage Structure & Contents

Web Security Threat Models
Same Origin Policy

HTTP (Hypertext Transfer Protocol)

« ASCII protocol from 1989 that allows fetching resources
(e.g., HTML file) from a server over TCP

— Two messages: request (client -> server) and
response (server -> client)

— Stateless protocol beyond a single request + response

» Every resource has a uniform resource location (URL)

HTTP: Application Layer
ons

AN / VS

From:20:61:84:3a:a9:52
To: 6d:36:ff:4a:32:92

From:1.2.3.4
To: 5.6.7.8

From: Port 1234

GET /HTTP/1.1

L7

L4
L3
L2
L1

m o

Physical

The Anatomy of a URL (Web Resource Address)

 https://www.uchicago.edu/fun/funthings.html?query=music
&year=2024#topsection

— Scheme (Protocol): https

— Hosthame: www.uchicago.edu

— Path: /fun/funthings.html

— Parameters: (key=value pairs, follow “?” and delimited with “&")
— Named anchor: #topsection (used only by client/browser)

HTTP Request: Client Msg to Server

Start line: method, target (path), protocol version

— GET /index.html HTTP/1.1
— Method: GET, PUT, POST, HEAD, OPTIONS

HTTP Headers (Key: Value pairs)

— Host, User-agent, Referer, many others
— https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

Body (not needed for certain methods, e.g., GET)

In Firefox: F12, “Network” to see HT TP requests

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

- HTTP Request

method i version

ndex.html HTTP/ : Start Line

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive
Headers

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Host: www.example.com

Referer: http://www.google.com?q=dingbats

HTTP GET vs. POST

HTTP Request
—

method path version

T A O Start Line

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95) Headers
Host: www.example.com

Referer: http://www.google.com?qg=dingbats

Name: Blasé Ur
Body
Organization: University of Chicago

HTTP Request Methods

GET: Get the resource at the specified URL & encode data at
the end of the URL (does not accept message body)

POST: Create new resource at URL with payload (body)

PUT: Replace target resource with request payload

PATCH: Update part of the resource

DELETE: Delete the specified URL

HT TP Request Methods

« Not all methods are created equal — some have different security protections

* GETs should not change server state; in practice, some servers do perform side effects

« OlId browsers don'’t support PUT, PATCH, and DELETE

— Most requests with a side affect are POSTs today

— Real method hidden in a header or request body

— 2 Never do...

— GET http://bank.com/transfer?fromAcct=X&toAcct=Y&amount=1000

HTTP Response: Server Msg to Client

e Status: https://developer.mozilla.org/en-US/docs/Web/HT TP/Status

— 200 (OK)

— 404 (not found)

— 301 (moved permanently)
— 302 (moved temporarily)

« HT TP Headers
* Body

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

HTTP Response

HTTP Response

—
status

HTTP/1.0 200 OK
code

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0

Content-Type: text/html headers
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT

Content-Length: 2543

<htmI>Some data... announcement! ... </html|> body

HTTP: Request & Response

Request Response
POST / HTTP/1.1 ¢«——— Start line ——> HTTP/1.1 483 Forbidden
Host: developer.mozilla.org Server: Apache
User-Agent: curl/8.6.0 Date: Fri, 21 Jun 2024 12:52:39 GMT
Accept: */* ¢«——— Headers ——— Content-Length: 678
Content-Type: application/json Content-Type: text/html
Content-Length: 345 Cache-Control: no-store
¢—— Empty line ——
{ <!DOCTYPE html>
""data": "ABC123" — Body — <html lang="en">
¥ (more data..)
Sent by clients (e.g., browsers) Sent by web servers,

in response to a request

From https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

HTTP — Website

* When you load a site, your web browser sends a GET
request to that website

7

e https://www.uchicago.edu/

Q

1. DNS resolves www.uchicago.edu ->

IP address (e.g., 128.135.164.125)

2. Browser: HTTP GET request to IP addr

for the default file: index.html
(since no path specified)

\

GET /index.html

—

uchicago.edu

http://www.uchicago.edu/

HTTP is Stateless

HTTP Request
—

GET /index.html HTTP/1.1

HTTP Response

HTTP/1.0 200 OK
Content-Type: text/html

<html|>Some data... </html>

If HTTP is stateless, how do we have website sessions?

HTTP Cookies

HTTP cookie: a small piece of data that servers send to clients
« Enables persistent state / web browsing sessions
« The client (browser) may store and send back in future requests to that site

Session Management

* Logins, shopping carts, game scores, or any other session state

Personalization

« User preferences, themes, and other settings

Tracking

* Recording and analyzing user behavior

Keeping State Using Cookies

Server Sends: Set-Cookie HT TP header
Client Sends w/ Each Request: Cookie HT TP header

— Cookie: name=value; name2=value?2; hame3=value3

Cookies are automatically sent with all requests your web
browser makes

Cookies are bound to an origin (only sent to servers w/
matching origin)

Setting Cookie

HTTP Response

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0

Connection: keep-alive

Content-Type: text/html
Set-Cookie: trackinglD=3272923427328234

Server uses
“Set-Cookie”

HTTP Header Set-Cookie: userlID=F3D947C2

Content-Length: 2543

<htmI|>Some data... whatever ... </html>

Sending Cookies

HTTP Request
—

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Cookies are
automatically
sent with all
requests your
browser
makes!

Referer: http://www.google.com?q=dingbats

Authorization Tokens = Cookies

You log into a website, and it presents you an authorization
token (typically a hash of some secret)

Subsequent HT TP requests automatically embed this
authorization token

Session cookies (until you close your browser) vs. persistent
cookies (until the expiration date)

View cookies: “Application” tab in Chrome developer tools,
“Storage” in Firefox

Login Session w/ Cookies

GET /loginform HTTP/1.1

cookies: []
HTTP/1.0 200 OK
cookies: []
. —
POST /login HTTP/1.1 <html><form>...</form></html>
cookies: []
HTTP/1.0 200 OK

username: Blase
cookies: [session: e82a7b92]

password: chicagodlife
<html><h1>Login Success</h1></html>

GET /account HTTP/1.1
cookies: [session: e82a7b92]

GET /img/user.jpg HTTP/1.1
cookies: [session: e82a7b92]

HTTPS: Protecting HTTP Data Over the Network

« Simply an extension where HT TP data sent over TLS!
— Thatis, TCP payload = HTTP request and response are encrypted

* Which CAs (certificate authorities) does your browser trust?

— Firefox: Options = Privacy & Security = (all the way at the
bottom) View Certificates

Outline

Web Overview
Navigating the Web

Structure & Contents of Webpages
Web Security Threat Models

Same Origin Policy

The Anatomy of a Webpage

« HTML (hypertext markup language)

— Language to create structured documents (webpages)
— Uses tags <> to define elements on the page

 All sorts of formatting tags: <div><p>Hi</p></div>

* Links: <a href="pblaseur.com”Click here

* Pictures:

* Forms

« Audio/video

The Anatomy of a Webpage

c @& view-source:https://www.cs.uchicago.edu/ 110% e @ N O © s =

1"></a
-2021">UChicago Researchers Present Seven Papers at Major Quantum Theory Conference</h4>

igital-transformation-institute-announces-cfp-to-advance-ai-for-energy-and-climate-security"><img class="r1600-900" src="https://d3giOgp55
ai-digital-transformation-institute-announces-cfp-to-advance-ai-for-energy-and-climate-security">C3.ai Digital Transformation Institute An

view-source:https://www.cs.uchicago.edu/

CSS (Cascading Style Sheets)

Language used for describing the presentation (“style”)
of a document

index.css

p.serif {
font-family: "Times New Roman", Times, serif;

}

p.sansserif {
font-family: Arial, Helvetica, sans-serif;

}

DOM (document object model)

Cross-platform model for
representing and interacting with
objects in HTML

* Represent a document
(webpage) as a tree object w/
properties (HTML elements)

* Browser takes HTML ->
structured data (DOM)

Inline Frames (iFrames)

* Beyond loading individual resources,
websites can also load other websites within = _iframe sre="URL"></iframe>
their window

— iFrame: floating inline frame 00 n

— Allows delegating screen area to content

from another source (e.g., ads)
ol [

— Frame isolation: inner & outer pages cannot c.com

modify each other’s content _.a.com

Creating Interactive Pages

« Javascript!
— The core idea: Let’s run code on the client’s computer

* Incredibly powerful scripting language that’s
interpreted/compiled & run inside of the browser:

— Math, variables, control structures

— Modify the DOM

— Access browser data & hardware

— Issue network requests for data (e.g., through AJAX)
— Can be multi-threaded (web workers)

Common Javascript Libraries

JQuery (easier to specity access to DOM)

— $(".test").hide() hides all elements with class="test"

JQueryUl
Bootstrap
Angular / React
Google Analytics

Importing Javascript Libraries

c @& view-source:https:;//www.cs.uchicago.edu/ 110% soe) * N o

</div>
</div>
</div>

<div class="row">
<div class="footer copy">
<p>© 2021 The University of Chicago</p>
</div>
</div>
</div>

</footer>

<script defer src="/js/libs/modernizr.js?updated=20191205080224"></script>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js"></script>

<script src="https://ajax.googleapis.com/ajax/libs/jqueryui/l.11.4/jquery-ui.min.js"></script>

<script>window.jQuery || document.write('<script src="/js/libs/jquery/2.1.4/jquery.min.js"><\/script><script src="/js/libs
<script defer src="/js/core-min.js?updated=20191205080225"></script>

<!--[if 1lte IE 8]><script src="/js/libs/selectivizr.js"></script><![endif]-->
<!--[if lte IE 9]><script src="/js/ie fixes/symbolset.js"></script><![endif]-->
<!--<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.lifestream/0.3.7/jquery.lifestream.min.js"></script> —->

<script async src="https://www.googletagmanager.com/gtag/js?id=UA-3572058-1"></script>
<script>window.datalayer = window.datalayer || [];function gtag() {datalayer.push (arguments);}gtag('js', new Date());
gtag('config', 'UA-3572058-1");gtag('config', 'UA-187440939-1'");</script>

</body>
</html>

Sub-resource Integrity

« Sub-resource integrity (SRI): Validate that the resource your
website loads on clients matches what you expect

— New “integrity” attribute for certain HTML tags

« \Website creator computes hash of expected resource, and adds
SRl integrity attribute to resource tags in their HTML

— cat FILENAME.]s | openssl dgst -sha384 -binary | openss| baseb4d —A

— <script src="https://example.com/FILENAME.|s” integrity="sha384-
oqVUATXRKap... x4JwY8wC"></script>

https://example.com/example-framework.js

Basic Browser Execution Model (Page
Rendering)

« Each browser window....

— Loads content of root page

— Parses HTML and runs included Javascript

— Fetches additional resources (e.g., images, CSS, Javascript, iframes)
— Responds to events like onClick, onMouseover, onLoad, setTimeout

— lterate until the page is done loading (which might be never)

Page Rendering

HTML B HTML Parser \
= bocy
CSS q CSS Parser /j : :;

page
modifications to

Javascript q JS Engine the DOM

Painter

bitmapl

" Busrosse & Instnsors

Loans B8 Leaming
frer

BankAmericard n 5100
. Cash Rewards" credit card W
Event Listener m

onus O

% % ils

yume 2% cash back at grocery stores. 3™ cas back on ga ==
Up t0:$1500 in quarterly spend

t

Information for: | Massachusos | ﬂ
y 8! Online Bill

g you 2 v
S Yo e e = Croos tances anmvme

Outline

Web Overview
Navigating the Web

Webpage Structure & Contents

Web Security Threat Models
Same Origin Policy

Web Attack Models

Malicious Website

Web Attack Models

Malicious Website Malicious External Resource

Desirable security goals
Integrity: a malicious website should not be able to tamper with
integrity of our computers or our information on other web sites

Confidentiality: malicious web sites should not be able to learn
confidential information from our computers or other web sites

Privacy: malicious web sites should not be able to spy on us or
our online activities

Availabllity: malicious parties should not be able to keep us from
accessing our web resources

Security on the web

* Risk #1: we don’t want a malicious site to be able
to trash files/programs on our computers

— Browsing to awesomevids.com (or evil.com) should
not infect our computers with malware (malicious
software), read or write files on our computers, etc.

Security on the web

* Risk #1: we don’t want a malicious site to be able
to trash files/programs on our computers

— Browsing to awesomevids.com (or evil.com) should
not infect our computers with malware, read or write
flles on our computers, etc.

* Defenses: Javascript is sandboxed;
try to avoid security bugs in browser code;
privilege separation; automatic updates.

Security on the web

e Risk #2: we don’'t want a malicious site to be able
to spy on or tamper with our information or
Interactions with other websites

— Browsing to evil. com should not let evil.com spy on
our emails in Gmail or buy stuff with our Amazon
accounts

Security on the web

e Risk #2: we don’'t want a malicious site to be able
to spy on or tamper with our information or
Interactions with other websites

— Browsing to evil. com should not let evil.com spy on
our emails in Gmail or buy stuff with our Amazon
accounts

» Defense: the same-origin policy

— A security policy grafted on after-the-fact, and
enforced by web browsers

Security on the web

e Risk #3: we want data stored on a web server to
be protected from unauthorized access

Security on the web

Risk #3: we want data stored on a web server to be
orotected from unauthorized access

Defense: server-side security
(e.g., web-app security, as well as access control,
software security, firewalls, etc.)

Outline

Web Overview
Navigating the Web

Webpage Structure & Contents

Web Security Threat Models
Same Origin Policy

Same-0rigin Policy (SOP). Core Web Defense

» (Goal: prevent one website from tampering with other
unrelated websites (malicious DOM access)

— Enforced by the web browser

» Origin [DOM]: exact triplet of (URI scheme, host name,
port)

» SOP: Content, such as scripts, from different origins cannot
interact with each other

— Javascript inherits origin of the frame that loaded it

Bounding Origins — Windows

* Every Window and Frame has an origin

 Origins are blocked from accessing other origin’s objects

() (

® ® hank.com n ® o attacker.com

\

attacker.comcannot...
- read or write content from bank .com tab
- read or write bank . com's cookies

- detect that the other tab has bank . com loaded

Assessing SOP

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/ J

http://wikipedia.org/ http://www.wikipedia.org/ x

http://wikipedia.org/ https://wikipedia.org/ x

X
X7

except @ !

http://wikipedia.org:81/ http://wikipedia.org:82/

http://wikipedia.org:81/ http://wikipedia.org/

SOP for HTTP Responses

» Pages can make requests across origins

[N GET /img/usr.jpg

e e attacker.com N

 w8 o \ |
 ‘

N bank.com

SOP does not prevent attacker.com from making the HTTP request to the server

http://attacker.com/
http://attacker.com

Origins and Cookies

r
[

\,

® bank.com

e

\,

® attacker.com

n

Browser will send bank.com cookie

POST /login

SOP blocks attacker.com from inspecting bank.com's image and cookie

SOP for Other HTTP Resources

Images: Browser renders cross-origin images, but SOP prevents page from
inspecting individual pixels. Can check size and if loaded successfully.

CSS, Fonts: Similar — can load and use, but not directly inspect

Frames: Can load cross-origin HTML in frames, but cannot inspect or modity
the frame content. Cannot check success for Frames.

r B

® ¢ attacker.com 2

attacker.com

bank.com

Script Execution

Scripts can be loaded from other origins. Scripts execute with the
privileges of their parent frame/window’s origin.
Parent can call functions in script.

e A .
v You can load library
® @ bank.com 2 .
from CDN and use it
<script src=%“/js/jquery.min.js”></script> to alter your page
_ .
- \ X If you load a malicious
® ® Dbank.com . library, it can also steal

<script src="jquery.com/jquery.min.js"></script> your data (e'g°l
. y cookies)

Relaxing SOP

Frames - Domain Relaxation

r

e facebook.com

Frame A

Origin: cdn . facebook.com

These frames

cannot access
each other’s DOM!

Domain Relaxation

You can change your document .domain to be a super-

domain

a.domain.com
b.domaln.com
a.domain.com

a.doin.co.uk

domailn.com
domain.com
com

CcO.uk

OK
OK
NOT OK
NOT OK

Cross-0Origin Resource Sharing
(CORS)

Let’s say you have a web application running at
app . company.com and you want to access JSON data by
making requests t0 api . company-internal . com.

By default, this wouldn't be possible — app.company.com and
apl.company-internal.com are different origins!

CORS (Relaxes SOP)

» Cross-Origin Resource Sharing

— HTTP Headers that specity when other origins can make a
request for data on a different origin

« Server on “a.com” can use CORS headers inits HT TP response:
— Access-Control-Allow-Origin: https://b.com

— Access-Control-Allow-Methods: POST, GET, OPTIONS
— Access-Control-Allow-Headers: X-PINGOTHER, Content-Type

When CORS is Needed

What requests use CORS?

This cross-origin sharing standard & can enable cross-origin HTTP requests for:

¢ Invocations of the XMLHttpReguest or Fetch APls, as discussed above.

¢ Web Fonts (for cross-domain font usage in @font-face within CSS),
so that servers can deploy TrueType fonts that can only be loaded cross-origin and used by web sites

that are permitted to do so. &

e WebGL textures.

¢ Images/video frames drawn to a canvas using drawImage() .

e CSS Shapes from images.

This is a general article about Cross-Origin Resource Sharing and includes a discussion of the necessary
HTTP headers.

From https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

	Slide 1: How the Web Works CMSC 23200, Spring 2025, Lecture 11
	Slide 2: Logistics
	Slide 3: Outline
	Slide 4: Web Browsing
	Slide 5: A 10,000 Foot View of Technologies
	Slide 6: Outline
	Slide 7: HTTP (Hypertext Transfer Protocol)
	Slide 8: HTTP: Application Layer
	Slide 9: The Anatomy of a URL (Web Resource Address)
	Slide 10: HTTP Request: Client Msg to Server
	Slide 11: HTTP Request
	Slide 12: HTTP GET vs. POST
	Slide 13: HTTP Request Methods
	Slide 14: HTTP Request Methods
	Slide 15: HTTP Response: Server Msg to Client
	Slide 16: HTTP Response
	Slide 17: HTTP: Request & Response
	Slide 18: HTTP → Website
	Slide 19: HTTP is Stateless
	Slide 20: HTTP Cookies
	Slide 21: Keeping State Using Cookies
	Slide 23: Setting Cookie
	Slide 24: Sending Cookies
	Slide 25: Authorization Tokens = Cookies
	Slide 26: Login Session w/ Cookies
	Slide 27: HTTPS: Protecting HTTP Data Over the Network
	Slide 28: Outline
	Slide 29: The Anatomy of a Webpage
	Slide 30: The Anatomy of a Webpage
	Slide 31: CSS (Cascading Style Sheets)
	Slide 32: DOM (document object model)
	Slide 33: Inline Frames (iFrames)
	Slide 34: Creating Interactive Pages
	Slide 35: Common Javascript Libraries
	Slide 36: Importing Javascript Libraries
	Slide 37: Sub-resource Integrity
	Slide 38: Basic Browser Execution Model (Page Rendering)
	Slide 39: Page Rendering
	Slide 40: Outline
	Slide 41: Web Attack Models
	Slide 42: Web Attack Models
	Slide 43: Desirable security goals
	Slide 44: Security on the web
	Slide 45: Security on the web
	Slide 46: Security on the web
	Slide 47: Security on the web
	Slide 48: Security on the web
	Slide 49: Security on the web
	Slide 50: Outline
	Slide 51: Same-Origin Policy (SOP): Core Web Defense
	Slide 52: Bounding Origins — Windows
	Slide 53: Assessing SOP
	Slide 54: SOP for HTTP Responses
	Slide 55: Origins and Cookies
	Slide 56: SOP for Other HTTP Resources
	Slide 57: Script Execution
	Slide 58: Relaxing SOP
	Slide 59: Frames - Domain Relaxation
	Slide 60: Domain Relaxation
	Slide 61: Cross-Origin Resource Sharing (CORS)
	Slide 62: CORS (Relaxes SOP)
	Slide 63: When CORS is Needed

