
Grant Ho

DNS, Certificates, and TLS
CMSC 23200, Spring 2025, Lecture 9

University of Chicago, 04/22/2025

(Slides adapted from Blasé Ur and David Cash)

Logistics

- Discussion Section resumes this Wednesday (04/23)

- Assignment 4 released on Friday (4/25)

- Assignment 1 grades released
Regrade Requests open until Friday (4/25)

Outline

- Wrap-Up: DNS Security

- Secure Network Channels

- Authenticating endpoints: Certificates (Certs)

- Issuing Certs and Certificate Infrastructure (PKI)

- Attacks, Countermeasures

- Real World Secure Channels: SSL / TLS

DNS (Uncached)

Images from https://www.cloudflare.com/learning/dns/dns-cache-poisoning/

(local resolver)

DNS (Cached, Benign)

Images from https://www.cloudflare.com/learning/dns/dns-cache-poisoning/

(local resolver)

Cache Poisoning
(DNS A Records: Single Name -> IP address)

Alice
Local

DNS

resolver

Q: www.bank.com

QID: x

ns.bank.com

A: 2.2.2.2

QID: x

Mallory

spoof src IP of ns.bank.com

A: 3.3.3.3

guess QID: x

Race

Defense: randomize 16-bit QID, set

a long time to live (TTL)

In-Path / On-Path: Easy

Off-Path: Also possible!
(JS from a malicious website)

root DNS server

DNS client
(My laptop)

Local DNS resolver
(mydns.uchicago.edu)

.net servers
(c.gtld-servers.net)

unixwiz.net NS server
(linux.unixwiz.net)

Cache Poisoning: DNS NS Records

Go ask unixwiz.net’s servers

Goal: Poison the resolver’s cache of
what these NS servers are -> attacker’s
servers.
(Can control all subdomain IP mappings)

Response Packet w/ NS Info
Response by the
“.net” TLD
nameserver to our
local DNS resolver

Authority Section:
Who are the name
servers you should
talk to next?

Additional Section
[Glue Records]:
What are their IP
Addresses so you
can go ask them? 6.6.6.6

6.6.6.6

root DNS server

DNS client
(My laptop)

DNS server / resolver
(mydns.uchicago.edu)

.net servers
(c.gtld-servers.net)

“unixwiz.net NS server”
(linux.unixwiz.net)
6.6.6.6

DNS: Poisoning Authority (NS) Records

Ask unixwiz.net’s servers @ IP = 64.170…

Ask unixwiz.net’s servers
@ IP = 6.6.6.6

root DNS server

DNS client
(My laptop)

DNS server / resolver
(mydns.uchicago.edu)

.net servers
(c.gtld-servers.net)

“unixwiz.net NS server”
(linux.unixwiz.net)

Kaminsky Attack (2008)

Ask unixwiz.net’s servers
@ IP = 6.6.6.6

QID = ???

Challenge: Attacker needs to guess the correct Query ID.
Can an off-path attacker make this attack work?

Kaminsky Attack (2008)

Alice
Local

DNS

resolver

ns.bank.com

Mallory

Alice runs JavaScript

from mallory.com

Q: a.bank.com

…

Q: b.bank.com

Q: c.bank.com
…

Mallory wins if any ri = sj

Final Answer (IP address) doesn’t matter; Mallory

spoofs the Authority & Glue record sections!

See http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html for details

http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html

Kaminsky Attack (2008)

• Key Idea: attacker forces DNS resolver to issue many queries by using
many fake subdomains (e.g., z123123.bank.com)

• Only needs to guess the query ID correctly for one of the queried subdomains
(QID: 16 bits = only ~65,000 possible values)

• Attaches a poisoned authority & glue record [NS info] in their reply

• Once poisoning succeeds: all un-cached subdomain lookups will ask the
attacker’s server instead of the domain’s real nameserver

• Defense: Randomize both the query ID and source port (16 -> 32 bits)
• Billions of possible values: very low probability of winning the race even with

many guesses at a time

General DNS Security: DNSSEC

• DNS responses signed

• Higher levels vouch for lower levels
— e.g., root vouches for .edu, .edu vouches for .uchicago, …

• Root public key published

• Most people don’t use DNSSEC and never will: Use TLS instead

Outline

- Wrap-Up: DNS Security

- The Dream: Secure Channels

- Authenticating endpoints: Certificates (Certs)

- Issuing Certs and Certificate Infrastructure (PKI)

- Attacks, Countermeasures

- Real World Secure Channels: SSL / TLS

The Internet is a Scary Place

AT&T

Comcast

Qwest

Alice

Bob

• In-Path attackers can do
whatever they want to
packets

• On-Path & Off-Path
attackers have ways to
become In-Path (e.g.,
ARP, DHCP, DNS spoofing)

What if Alice & Bob had a shared cryptographic key?

AT&T

Comcast

Qwest

Alice

BobFrom: 89:8d:...:24
To: d5:a9:...:80

From: 1.2.3.4
To: 5.6.7.8

From: Port 1234
To: Port 80

HTTPS:
Pwd=…

What if Alice & Bob had a shared cryptographic key?

AT&T

Comcast

Qwest

Alice

Bob
From: 89:8d:...:24
To: d5:a9:...:80

From: 1.2.3.4
To: 5.6.7.8

From: Port 1234
To: Port 80

HTTPS:
Pwd=…

From: 89:8d:...:24
To: d5:a9:...:80

From: 1.2.3.4
To: 5.6.7.8

From: Port 1234
To: Port 80

HTTPS:
Pwd=…

From: 89:8d:...:24
To: d5:a9:...:80

From: 1.2.3.4
To: 5.6.7.8

From: Port 1234
To: Port 80

HTTPS:
Pwd=…

Template For Secure Channels (TLS, SSH, IPSec, …)

<encrypted data>

…

Key Exchange (“Handshake”)

A

B

<encrypted data>

<encrypted data>

Symmetric Encryption (“Record Protocol”)

• Recall: Naïve key exchange secure against passive adversaries.

• But the above template does not provide authentication & integrity.

uchicago.edu

Recall: Naïve Key Exchange w/ Pub-Key

Goal: Establish secret key K to use for Symmetric Encryption.

KeygenPK,SK

PK

(KeyGen, Enc, Dec) is a public-key encryption scheme (e.g., RSA).

Pick random
AES key K

C = Enc(PK,K)

K is the

message

K
K

K←Dec(SK,C)

AES-GCM(K,Mi)

(Passive Attacker)

Securing Key Exchange against Active (MITM) Attackers

Key Challenge: Authenticity: How do we know that PK is really Bob’s?

KeygenPK,SK

PK … PK’

Pick random
AES key K

C = Enc(PK',K)

K
K

K←Dec(SK,C)

AES-GCM(K,Mi)

(MITM: Active Attacker)

C = Enc(PK,K)

K

Alice Bob

Recall: Public Crypto Tools

Public Key Encryption

• Encryption key [pk] is public to
everyone (anyone can encrypt)

• Only the person with the private
key [sk] scan decrypt

Digital Signatures

• Verification key [vk] is public to
everyone (anyone can validate
signatures)

• Only person with signing key [sk]
can generate signatures

Authentication with Certificates (“Certs”)

Suppose we had a globally trusted entity, BlaséInc.

BlaséInc could issue certificates (“certs”) that
state what other organizations’ public keys are.

Cert = a document that says:
1. An Entity (e.g., UChicago) has a public key that is:
2. pk=0x7b5532…, where the document is
3. signed using the BlaséInc’s private signing key

Trusted entity, BlaséInc,known as a Certificate Authority (CA)

Certificate

Authority

(CA)

(VK*,SK*)

google.com

(PK1,SK1)

ID Proof,PK1

cert1

cert1=[PK1,"google.com",σ1]

uchicago.edu

(PK2,SK2)

cert2=[PK2,"uchicago.edu",σ2]

cert2

VK*

VK* pre-installed on every machine by manufacturer or built into OS code.

σ1=Sign(SK*,"google.com||PK1")

Authentication with Certificates (“Certs”)

σ2=Sign(SK*,"uchicago.edu||PK2")

Securing Key Exchange against Active Attackers

KeygenPK,SK

Pick random
AES key K K

K

K←Dec(SK,C)

AES-GCM(K,Mi)

(Active Attacker)

C = Enc(PK, K)

Alice
Bob

cert=[PK,"Bob",σ]

VK*

• Is cert for Bob?
• Does the cert have correct

signature (check w/ VK*)?

Verify Same Key

(MAC(K, Dialogue))

Outline

- Wrap-Up: DNS Security

- The Dream: Secure Channels

- Authenticating endpoints: Certificates (Certs)

- Issuing Certs and Certificate Infrastructure (PKI)

- Attacks, Countermeasures

- Real World Secure Channels: SSL / TLS

Issuing Certificates: Validation

(PK*,SK*)

uchicago.edu

(PK1,SK1)

PK1

cert1
cert1=[PK1,”uchicago.edu”,σ1]

• CA must check that key PK1 really does belong to “uchicago.edu”

Domain Validation (DV): Check that party with that key can control domain.

Org. Validation (OV) and Extended Validation (EV): Also check company name,

location etc via public records.

CA

ACME Protocol by Let’s Encrypt

(PK*,SK*)
PK1

cert1

1. Requestor submits public key and request to CA

2. CA gives a challenge to requestor

3. Requestor places challenge on server or DNS TXT records

4. CA checks challenge and then issues cert if challenge matches

uchicago.edu

(PK1,SK1)

cert1=[PK1,"uchicago.edu”,σ1]CA

Certificate

Authority

(CA)

(VK*,SK*)

google.com

(PK1,SK1)

ID Proof,PK1

cert1

Scaling Certificates to the Internet

Having one CA works fine if the Internet has just a few
entities and everyone agrees that the CA is trustworthy.

Certificate

Authority

(CA)

(VK*,SK*)

google.com

(PK1,SK1)

ID Proof,PK1

cert1

…

Scaling Certificates to the Internet

But the Internet has billions of
devices…
And not everyone agrees on a
trusted party (CA)…

Scaling: Intermediate CAs and Cert Chains

Root CA

(PK*,SK*)
PK1

cert1

Intermediate CA

(PK1,SK1)

To handle scaling:
• Allow a trusted Root CA to delegate their trust to multiple intermediate CA’s
• Any of these intermediate CA’s can then create a certificate for someone

• 100’s of intermediate CA’s on the Internet

Root CA

(PK*,SK*)

Scaling: Intermediate CAs and Cert Chains

PK*

uchicago.edu

(PK2,SK2)

cert2=[PK2,"uchicago.edu",σ2]

cert2

PK2 ; cert2

PK* bound to Root ⇒ PK1 bound to CA ⇒ PK2 bound to uchicago.edu

Hello!

PK1

cert1

Intermediate CA

(PK1,SK1)

cert1=[PK1,"Intermediate CA",σ1]

To check PK2

recursive
validation:
1) Check cert2

to make sure
PK2 for
uchicago.edu

2) Get PK1 and
cert1 to check
sig of cert2

3) If cert1 issued
by root CA,
use PK* to its
check sig.

PK2

X.509 Certificates

Cert Content Includes:

• Cert’s Serial number

• Cert’s Expiration date

• Common name of subject (e.g., Bob [google.com])

• Public key of subject

• Extensions (possibly many)

• CA info (name of CA that is issuing the cert, etc.)

• CA’s Signature (on hash of cert)

Who’s
signature?

Who are we
trusting?

Root CA’s & Root Certificates

Outline

- Wrap-Up: DNS Security

- The Dream: Secure Channels

- Authenticating endpoints: Certificates (Certs)

- Issuing Certs and Certificate Infrastructure (PKI)

- Certs: Attacks, Countermeasures

- Real World Secure Channels: SSL / TLS

What if attacker got a “valid” cert for uchicago.edu
that has their malicious key?

uchicago.edu
(PK1,SK1)

Hello!

PK’; Cert' PK1; Cert

• “Machine-in-the-middle” can read/change all traffic undetected

“rogue cert”

CA Security

“Let’s Encrypt: An Automated Certificate Authority to Encrypt the Entire Web”,

CCS 2019

Some common attacks to get rogue certificate:
• Fool or bypass a CA’s validation process
• Compromise a CA organization and generate malicious cert’s

Sample of CA Security Incidents

(Slide inspiration: Dan Boneh)

• 2011, Root CA Comodo: Login credentials stolen. Hacker issues certs for

mail.google.com, login.live.com, www.google.com, login.yahoo.com…

• 2011, Root CA DigiNotar: Hacker issues rogue cert for *.google.com, others.

Used to MitM by Iranian government.

• 2013, Root CA TurkTrust: Accidentally issues intermediate CA cert, used to

issue gmail.com cert.

• …

• 2019, Root CA Comodo: Pushes email login credentials to public GitHub

repo…

Countermeasure: Public-Key Pinning

• Goal: Eliminate Root / Intermediate CA’s with bad hygiene or who you don’t trust

• Server (e.g., website) can tell client (e.g., browser) to only accept certs signed by certain CA’s

• Code trusted CA keys into client app (e.g., Chrome only trusts certs signed by Google’s CA), or

• Send special application message telling client what to pin (More common)

• Helped discover some rogue certs from previous slide

• What are some problems with this defense?

• If server hacked… attacker can pin a malicious key/cert: will only connect w/ attacker cert!

• Website error: pin wrong or broken key… website inaccessible!

Now deprecated because of these issues

Countermeasure: Revocation

Publicly list bad (revoked) certificates so they are no longer accepted

• CA or Server (that was issued cert) can revoke

Cert Revocation Lists (CRLs)

(PK*,SK*)

CA’s CRL Server

Revoked serial numbers:

09823342365

23423482349

98072344456

…

• Each CA provides a list of revoked cert’s

• Clients can download CRL and check cert’s

they receive against the list

• Problems:

• List will get too large

• Difficult to keep current

Revocation: Online Certificate Status Protocol (OCSP)

uchicago.edu

(PK2,SK2)
A

B; Cert

OCSP Server (CA)

Is Cert valid?
Yes or No

(“OCSP response”)

• Add another server to connect to, slowing connection

• What if OCSP server times out?

• Privacy problem?

Revocation: OCSP Stapling

uchicago.edu

(PK2,SK2)
A

B; Cert; OCSP response

OCSP Server (CA) Is Cert valid?

OCSP Response:

Signed(Yes / No,

Timestamp)

• TLS Extension that allows for OCSP response to be included with cert

• Client checks CA signature and time-stamp on response (~hours old).

• Certs can have “must staple” extension.

Revocation: OCSP Stapling

uchicago.edu

(PK2,SK2)
A

B; Cert; OCSP response

OCSP Server (CA) Is Cert valid?

Problems?

• OCSP server goes down => uchicago.edu goes down (no OCSP response to attach to cert)

OCSP Response:

Signed(Yes / No,

Timestamp)

Certificate Transparency (CT) :
How do we find rogue certs?

Scenario: Attackers compromise a CA
and create rogue certs for
google.com that have

(1) attacker’s public keys and
(2) valid CA signature

How does Google or the CA discover
these rogue certs were issued or in use?

Cert Transparency:
• Require all cert’s added to public

audit logs
• Domains & CA’s can check audit logs

for rogue certs & revoke them

Certificate Transparency (CT)

Simplified strategy to find certificates we should revoke:

• An auditor maintains a list (log) of every certificate ever issued

• Whenever a CA issues a cert, they submit (add) cert to this log

• Clients only accept a server’s cert if it appears on the log

• Each server (domain) can now monitor the logs to see if anyone
(and who) issued a rogue certificate for them

• If so, add the rogue cert to revocation lists

• If CA has pattern of issuing rogue cert’s, ban them

Certificate Transparency (CT)

(PK*,SK*)

google.com

PK

Cert + SCT

Cert

cert1

cert2

cert3

…

• CT Log server maintains a list of

all certs issued by CA(s).

• “Monitors” check for improper certs;

help domains & CA(s) find bad cert’s

• Clients only accept certs if server also

has valid SCT’s for certs

• In practice: multiple CT log servers

SCT:

Signed

Proof that

cert was

logged

CA

CT Log

server

Cert + SCT

Hello

(PK, Cert, SCT)

Challenges with CT

• List is huuuuge (every issued cert… solution: temporal sharding)

• Trust the CT Log?

• (Monitors) Who checks the logs?

• Privacy (e.g., enterprise has private servers)?

CT Log Server

cert1

cert2

cert3

…

Cert Transparency & OCSP

(https://certificate.transparency.dev/howctworks/)

How do CT and OCSP compare?

• OCSP: Allows clients to

determine if a cert is valid

• CT: Allows domains (cert owners)

and CA’s to find malicious cert’s

Outline

- Wrap-Up: DNS Security

- The Dream: Secure Channels

- Authenticating endpoints: Certificates (Certs)

- Issuing Certs and Certificate Infrastructure (PKI)

- Attacks, Countermeasures

- Real World Secure Channels: SSL / TLS

TLS in the Protocol Stack

Application (HTTP)

Transport (TCP)

Network (IP)

Data Link (Ethernet)

Physical (802.11)

TLS

• Goal: Allow any application using TCP to transmit data with E2E security

• TLS takes requests from applications (e.g. browser speaking HTTP) and transmits

them securely to another host on the Internet

From: 89:8d:...:24
To: d5:a9:...:80

From: 1.2.3.4
To: 5.6.7.8

From: Port 1234
To: Port 80

HTTPS:
Pwd=…

From: 89:8d:...:24
To: d5:a9:...:80

From: 1.2.3.4
To: 5.6.7.8

From: Port 1234
To: Port 80

HTTPS:
Pwd=…

1993

SSL v1.0

1995

SSL v2.0

1996

SSL v3.0

1999

TLS v1.0

2006

TLS v1.1

2008

TLS v1.2

August 2018

TLS v1.3

History: SSL/TLS

• SSL = “Secure Sockets Layer”

• TLS = “Transport Layer Security” (renaming of SSL)

TLS Adoption (HTTPS)

(Source: transparencyreport.google.com, via Matt Green)

http://transparencyreport.google.com/

TLS Protocol: Very Similar to Our Template

KeygenPK,SK

Pick random
key K K

K

K←Dec(SK,C)

AES-GCM(K,Mi)

C = Enc(PK, K)

Alice
Bob

cert=[PK,"Bob",σ]

• Is cert for Bob?
• Is cert in CT logs and

has it been revoked?
• Does the certificate chain

have valid signatures?

Verify Integrity & Keys

(MAC(K, Dialogue))

Hello [Protocols & Init]

	Slide 1: DNS, Certificates, and TLS CMSC 23200, Spring 2025, Lecture 9
	Slide 2: Logistics
	Slide 3: Outline
	Slide 4: DNS (Uncached)
	Slide 5: DNS (Cached, Benign)
	Slide 6: Cache Poisoning (DNS A Records: Single Name -> IP address)
	Slide 7: Cache Poisoning: DNS NS Records
	Slide 8: Response Packet w/ NS Info
	Slide 9: DNS: Poisoning Authority (NS) Records
	Slide 10: Kaminsky Attack (2008)
	Slide 11: Kaminsky Attack (2008)
	Slide 12: Kaminsky Attack (2008)
	Slide 13: General DNS Security: DNSSEC
	Slide 14: Outline
	Slide 15: The Internet is a Scary Place
	Slide 16: What if Alice & Bob had a shared cryptographic key?
	Slide 17: What if Alice & Bob had a shared cryptographic key?
	Slide 18: Template For Secure Channels (TLS, SSH, IPSec, …)
	Slide 19: Recall: Naïve Key Exchange w/ Pub-Key
	Slide 20: Securing Key Exchange against Active (MITM) Attackers
	Slide 21: Recall: Public Crypto Tools
	Slide 22: Authentication with Certificates (“Certs”)
	Slide 23
	Slide 24: Securing Key Exchange against Active Attackers
	Slide 25: Outline
	Slide 26: Issuing Certificates: Validation
	Slide 27: ACME Protocol by Let’s Encrypt
	Slide 28
	Slide 29
	Slide 30: Scaling: Intermediate CAs and Cert Chains
	Slide 31: Scaling: Intermediate CAs and Cert Chains
	Slide 32: X.509 Certificates
	Slide 33
	Slide 34: Root CA’s & Root Certificates
	Slide 35: Outline
	Slide 36: What if attacker got a “valid” cert for uchicago.edu that has their malicious key?
	Slide 37: CA Security
	Slide 38: Sample of CA Security Incidents
	Slide 39: Countermeasure: Public-Key Pinning
	Slide 40: Countermeasure: Revocation
	Slide 41: Cert Revocation Lists (CRLs)
	Slide 42: Revocation: Online Certificate Status Protocol (OCSP)
	Slide 43: Revocation: OCSP Stapling
	Slide 44: Revocation: OCSP Stapling
	Slide 45: Certificate Transparency (CT) : How do we find rogue certs?
	Slide 46: Certificate Transparency (CT)
	Slide 47: Certificate Transparency (CT)
	Slide 48: Challenges with CT
	Slide 49: Cert Transparency & OCSP
	Slide 50: Outline
	Slide 51: TLS in the Protocol Stack
	Slide 52
	Slide 53
	Slide 54: TLS Protocol: Very Similar to Our Template
	Slide 55

