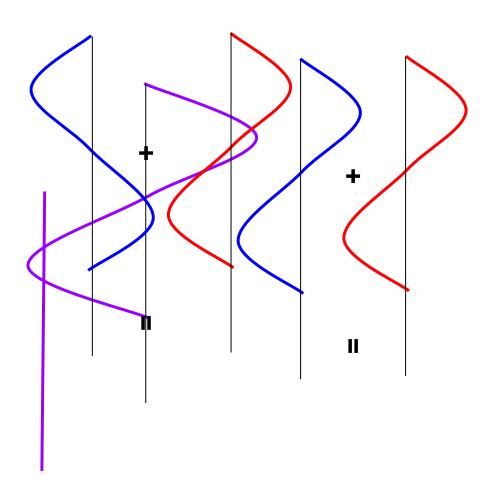
Working with i and rotations

Quantum Information Science Complex Numbers

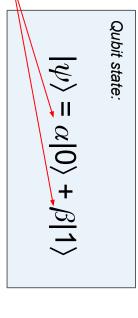
Quantum Interference

- Qubits in superposition constructively and destructively interfere due to phase differences
- We refer to the phase difference between $|0\rangle$ and $|1\rangle$ as **relative phase** (ex. the -1 in $|\psi\rangle = |-\rangle = \alpha |0\rangle \beta |1\rangle)$
- Think about waves:
- **Like** signs in amplitude -> bigger combined wave
- Different signs in amplitude -> combined amplitude goes to zero



Probability Amplitudes and Phase

We have looked at qubit states with probability amplitudes that are real numbers



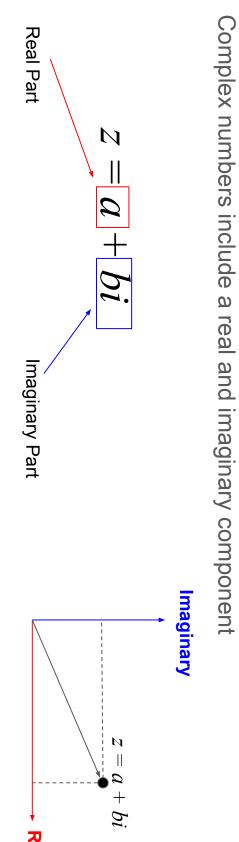
- Example real numbers: -1, 5.3, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$
- Phase differences occur when |0>and |1>have opposite sign
- be complex numbers Probability amplitudes associated with quantum state can also

Mathematical Symbols:

 $\mathbb{R}:$ Set of Real Numbers. Includes positive and negative values that are rational or irrational

G: Set of Complex Numbers

Complex Numbers



i is an imaginary number where $i = \sqrt{-1}$ and $i^2 = -1$

Working with Complex Numbers

Like terms combine for addition and subtraction

$$(3+4i)+(6-2i) = (9+2i) (4)-(3-i) = (1+i)$$

Remember: $i*i = i^2 = -1$ and (-1)*(-1) = 1

$$(3 - 2i) (1 + 3i) =$$

 $9 + 7i$

PRACTICE: Multiply these two complex numbers.

$$(3+i)(-2i)$$
 (6

$$(6-2i)(7-4i)$$

-4i -2-6i 2+6i 2-6i

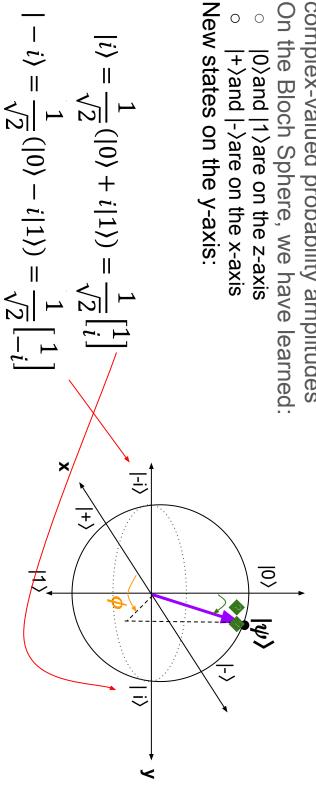
PRACTICE: Multiply these two complex numbers.

$$(3+i)(-2i)$$
 $(6-2i)(7-4i)$

-4i -2-6i 2+6i **2-6i**

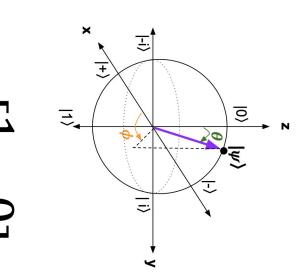
Complex values in quantum computing

- complex-valued probability amplitudes Changes in ϕ (\neq 0, π) can result in



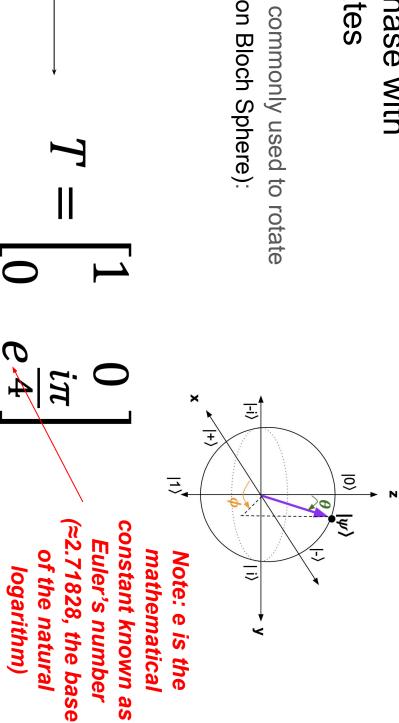
Rotating Phase with S and T gates

Two new gates commonly used to rotate qubit phase (ϕ on Bloch Sphere):



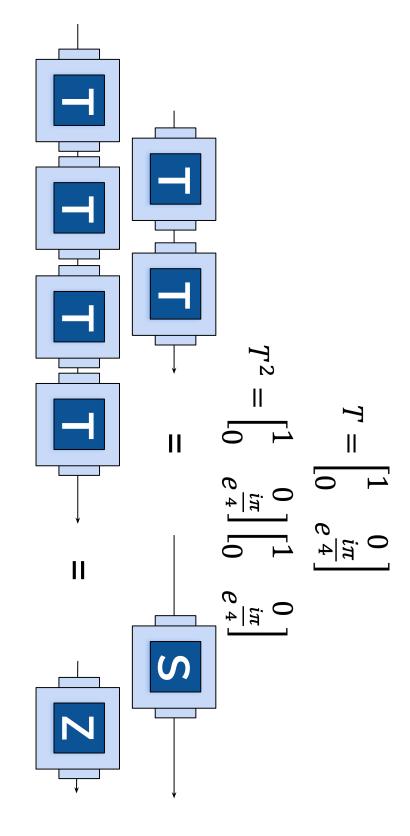
S and T gates Rotating Phase with

qubit phase (ϕ on Bloch Sphere): Two new gates commonly used to rotate



Is S its own inverse?!?

Is T its own inverse?!?

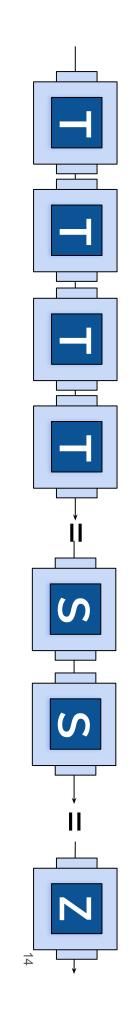


Relations between the Phase Gates: T, S, Z

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = \sqrt{Z}$$

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{bmatrix} = \sqrt{S} = \sqrt[4]{Z}$$

$$S^{2} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = Z \quad T^{2} = \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = S$$



Example: State Transformation with S

$$|0\rangle \longrightarrow |S| \longrightarrow |0\rangle \quad S|0\rangle = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

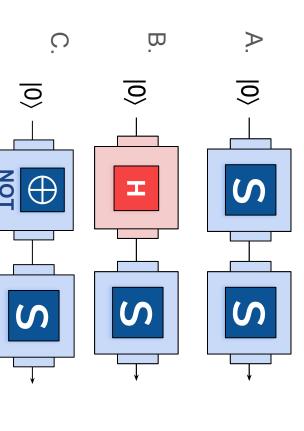
$$|1\rangle \longrightarrow |S| \longrightarrow |1\rangle \Rightarrow S|1\rangle = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ i \end{bmatrix}$$

As with negative / positive phase, i / not-i phase is meaningless without superposition

Why are Complex Values used in Quantum Computing? (SIMPLE ANSWER)

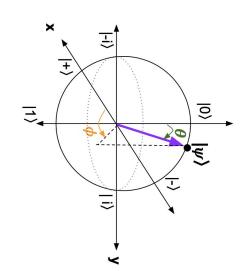
- Quantum signals must interfere with phases at varying degrees....critical for many quantum algorithms!
- While in superposition, value of quantum state is unknown and complex values describe unknown values (especially those that oscillate) very well
- operation that produces real numbers In the end, physical meaning not connected to complex quantities, but
- Phase associated with probability amplitudes not measured
- Requirement that for $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, $|\alpha|^2 + |\beta|^2 = 1$

PRACTICE: What circuit allows for us to produce |i>?

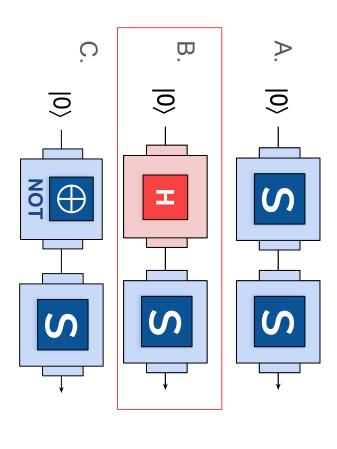


Hint: NOT =
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix}$$

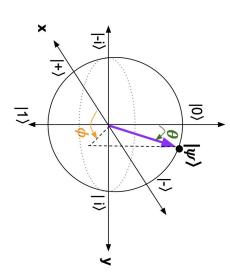
S



PRACTICE: What circuit allows for us to produce |i>?



Hint: NOT =
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$



$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

エ

What is the value of i^3?

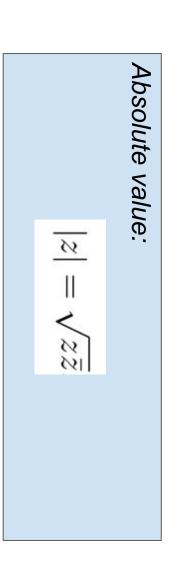
What is the value of i^3?

What is the value of i^4?

What is the value of i^4?

Absolute Value of a Complex Number

Square root of value times complex conjugate



Example: Absolute Value of a Complex Number

Absolute value: $|z| = \sqrt{z\bar{z}}$

S

Example: Calculate Probabilities for |i>

Absolute value:

$$|z| = \sqrt{z\bar{z}}$$

Known: Probability for measuring $|0\rangle$ is $|\alpha|^2$ and $|1\rangle$ is $|\beta|^2$ for $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$

$$|i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle) = \frac{1}{\sqrt{2}}\begin{bmatrix}1\\i\end{bmatrix}$$

Note: $i^*i = -1$, $-i^*i = 1$

Probability of |1>

$$|\alpha|^2 = \left(\sqrt{\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)}\right)^2 = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}$$

$$|\beta|^2 = \left(\sqrt{\left(\frac{i}{\sqrt{2}}\right)\left(\frac{-i}{\sqrt{2}}\right)}\right)^2 = \left(\sqrt{\left(\frac{1}{2}\right)}\right)^2 = \frac{1}{2}$$

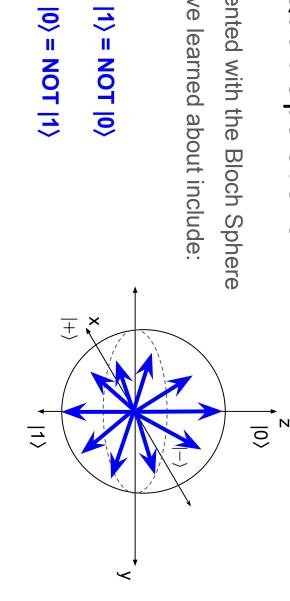
The Bloch Sphere and Single-Qubit Rotation Operations

Review: Single-Qubit Operations

- Qubit state represented with the Bloch Sphere
- Qubit gates we have learned about include:

NOT

No.



It implements a rotation of π around the x-axis of the Bloch Sphere! The NOT gate is also called the X gate...

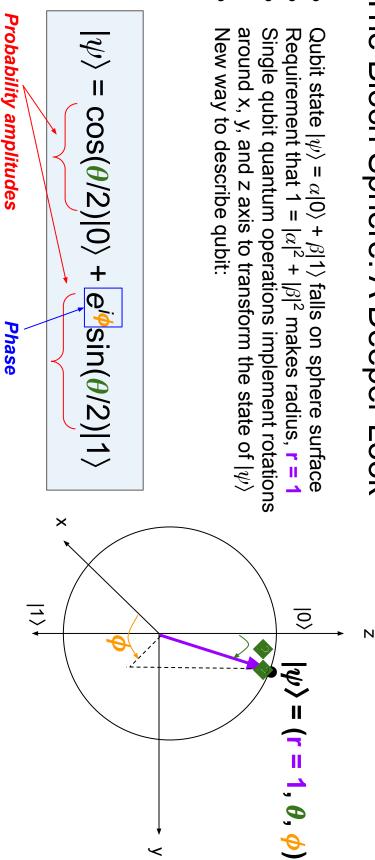
Review: Single-Qubit Operations

Qubit state represented with the Bloch Sphere

Ν

The H gate implements a rotation of $\pi/2$ around the y-axis of the Bloch Sphere!

The Bloch Sphere: A Deeper Look

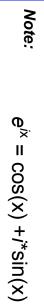


Example: Confirm Location of |-> =

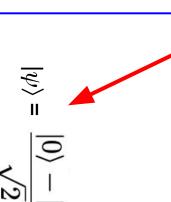
$$|\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$$

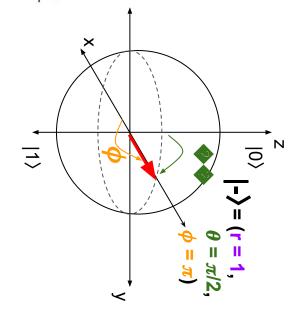
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\psi\rangle = \cos((\pi/2)/2)|0\rangle + e^{i\pi}\sin((\pi/2)/2)|1\rangle$$



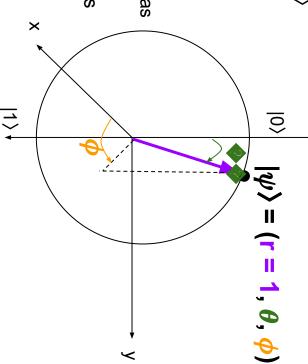
f(x) \ x	0	$\pi/4$	$\pi/3$	π/2	л
cos(x)	1	$\frac{1}{\sqrt{2}}$	1 2	0	-1
sin(x)	0	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0





Important Observations

- Angle \(\theta \) influences the probability of observing \(|0 \) or \(|1 \)
- As θ increases, you are more likely to observe a $|1\rangle$
- Angle ϕ influences phase between $|0\rangle$ and $|1\rangle$
- Phase never *measured*, but important for quantum algorithms
- We refer to the phase difference between $|0\rangle$ and $|1\rangle$ as relative phase (ex. the -1 in $|\psi\rangle = \alpha |0\rangle \beta |1\rangle$)
- **Global phase** common to both $|0\rangle$ and $|1\rangle$ expressed as $e^{i\gamma}|\psi\rangle$ (ex. $e^{i\gamma}=-1$, i) has no observable impact on quantum state and is typically discarded



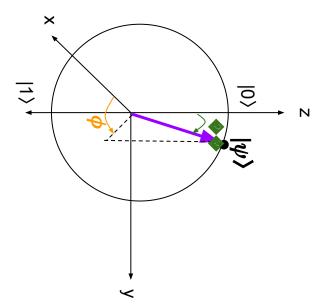
Generalized Rotation Operations

The generalized single-qubit rotation operations allow for arbitrary state

$$R_x(\gamma) = \begin{bmatrix} \cos\left(\frac{\gamma}{2}\right) & -i\sin\left(\frac{\gamma}{2}\right) \\ -i\sin\left(\frac{\gamma}{2}\right) & \cos\left(\frac{\gamma}{2}\right) \end{bmatrix}$$

$$R_{\mathcal{Y}}(\gamma) = \begin{bmatrix} \cos\left(\frac{\gamma}{2}\right) & -\sin\left(\frac{\gamma}{2}\right) \\ \sin\left(\frac{\gamma}{2}\right) & \cos\left(\frac{\gamma}{2}\right) \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} e^{-\frac{i\gamma}{2}} & 0\\ 0 & e^{\frac{i\gamma}{2}} \end{bmatrix}$$



Example Rotation: Calculating $R_{x}(\pi)$

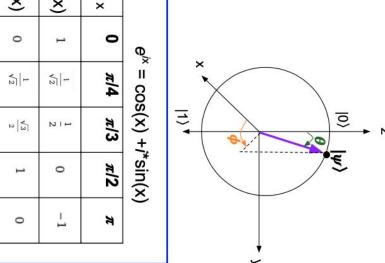
The $R_{\mathbf{x}}(\pi)$ gate implements a rotation of π around the x-axis of the Bloch Sphere

$$R_{x}(\gamma) = egin{bmatrix} \cos\left(rac{\gamma}{2}
ight) & -i\sin\left(rac{\gamma}{2}
ight) \ -i\sin\left(rac{\gamma}{2}
ight) & \cos\left(rac{\gamma}{2}
ight) \end{bmatrix}$$

$$R_{x}(\pi) = \begin{bmatrix} \cos\left(\frac{\pi}{2}\right) & -i\sin\left(\frac{\pi}{2}\right) \\ -i\sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right) \end{bmatrix}$$

$$R_{x}(\pi) = -i\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \rightarrow \mathbf{NOT} = \mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

state...we say that $R_x(\pi)$ is equal to X up to a global phase of -i **Global phase (-i) has no observable impact on quantum



sin(x)	cos(x)	f(x)\x	Note:	
0	1	0	Ø.	
$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	π/4	× = CO	
2	1 2	π/3	s(x) +	13)
1	0	π/2	$e^{ix} = \cos(x) + j^* \sin(x)$	
0	-1	π	_	

Example Rotation: Calculating $R_z(\pi)$

The $R_z(\pi)$ gate implements a rotation of π around the z-axis of the Bloch Sphere

$$R_{z}(\gamma) = \begin{bmatrix} e^{-\frac{i\gamma}{2}} & 0\\ 0 & e^{\frac{i\gamma}{2}} \end{bmatrix}$$

$$R_{\mathbf{Z}}(\pi) = \begin{bmatrix} e^{-\frac{i\pi}{2}} & 0\\ 0 & e^{\frac{i\pi}{2}} \end{bmatrix}$$

$$R_z(\pi) = -i \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \rightarrow \mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

state...we say that $R_z(\pi)$ is equal to Z (phase flip) up to a global **Global phase (-i) has no observable impact on quantum phase of -i

			<u> </u>	i i
sin(x)	cos(x)	f(x)\x	Vote:	
0	1	0	Q,	
1 /2	$\frac{1}{\sqrt{2}}$	π/4	, = cos	*
2 3	1 2	π/3	s(x) +	2 0
1	0	π/2	$e^{ix} = \cos(x) + i*\sin(x)$	₹
0	-1	π	_	
10 1 82				, ,

What is the matrix for Ry(pi)?

$$R_{\gamma}(\gamma) = \begin{bmatrix} \cos\left(\frac{\gamma}{2}\right) & -\sin\left(\frac{\gamma}{2}\right) \\ \sin\left(\frac{\gamma}{2}\right) & \cos\left(\frac{\gamma}{2}\right) \end{bmatrix}$$

cos(x) sin(x) f(x) \ x 0 0 $e^{ix} = \cos(x) + i*\sin(x)$ $\pi/4$ $\pi/3$ $\pi/2$ $\frac{1}{\sqrt{2}}$ √₂ 2 3 2 0 Ħ

0

മ

0 -1

ဂ

σ

0 0 0

d (1 0 (0 -1)

What is the matrix for Ry(pi)?

മ

$$\begin{array}{c} c \\ \hline 0 \\ 1 \end{array}$$

d (1 0 -1)

$$(\gamma) = \begin{bmatrix} \cos\left(\frac{\gamma}{2}\right) & -\sin\left(\frac{\gamma}{2}\right) \\ \sin\left(\frac{\gamma}{2}\right) & \cos\left(\frac{\gamma}{2}\right) \end{bmatrix}$$

1	Note:	f(x) \ x	cos(x)	sin(x)
	Φ.	0	-	0
	$e^{ix} = \cos(x) + i^* \sin(x)$	$\pi/4$	1 /2	$\frac{1}{\sqrt{2}}$
	s(x) +	$\pi/3$	1 2	2
	r*sin(x	π/2	0	1
		π	-1	0

Takeaway

- Single qubit gates can be thought of as rotation operations
- Visualized as rotations around the x-, y-, and z-axis of the Bloch Sphere
- The R_x , R_y , and R_z operations allow arbitrary qubit states to be created Global phase on qubit state can generally be ignored

