
Grover’s Algorithm
Searching for quantum advantage with practical applications

Outline

History and motivation of the algorithm

● Original formulation – “database” search
● Practical applications

○ Factoring
○ Clustering

● Speedups compare to classical

Algo details

● Formalism (unstructured search, oracle)
● Oracle = Reflection
● Reflection = Amplification

Final remarks
2

Whose exam is this??

3

An exam was submitted with only the ID number (but no name!)

To find out who the exam belong to:

● Student directory – input student’s name
returns their ID number

● Go through all the students until finding
the ID number matching the one on exam?

… 󰷺 very slow! Photo credit: https://phdcomics.com/

The Database Search Problem

This is the original “Phone-directory” problem considered by Lov Grover in 1996

“A fast quantum mechanical algorithm for database search”

● Search space
○ All students taking the class
○ Could also be abstract in general: all possible ways to partition a set into two groups.

● A way to quickly check if the input is desired solution (the “oracle”)
○ Clicking into their page and checking if their ID matches the unnamed exam

● How to find who the exam belongs to with the least number of clicks?

4

Quantum Search: Grover’s Algorithm

A general-purpose search algorithm applicable to
problems that can be solved by a classical
brute-force search

One of the most famous quantum algorithms (after
Shor’s Algorithm)

5

Lov
Grover

P
ho

to
 c

re
di

t:
ht

tp
s:

//m
ed

iu
m

.c
om

/@
sa

ki
bk

ha
n/

gr
ov

er
s-

al
go

rit
hm

-fo
r-

se
ar

ch
in

g-
a-

q
ua

nt
um

-a
pp

ro
ac

h-
14

88
b3

25
15

1f

In reality, “Database” is a misnomer–
There is often no data!!

● Quantum systems are bad for persistent storage
● Costs of entering data outweigh benefits of QAlgs

Usually used to search *all possible solutions*

Examples: Searching for a good solution

In reality, suitable for abstract problems that does not require data storage

● Identifying Good Models: Finding a good classification and clustering
models for complicated data sets

○ Inputs/Search Space: model parameters
○ Good solutions/Oracle: models that have a good prediction rate

● One-Way Functions: A function with good solutions that are computationally
difficult to generate but easy to verify; e.g., solutions to a sudoku puzzle

○ Inputs: Arbitrary numbers filling the sudoku puzzle
○ Good solutions/Oracle: solutions that obey the rules

● Etc…

6

Grover’s Algorithm Target Application Class

● Large search space - Lots of potential solutions, few good solutions
● Quick oracle - Can quickly check whether a solution is good
● Unstructured search - Checking whether one solution is good does not give

you information on potential solution
○ No good heuristics of narrowing down the search space

→ Best Quantum Advantage when the best classical approach is brute-force

7

Factoring a large number
Very computationally expensive to calculate the solution

Lots of possible solutions

Grover’s approach:

● Given a cryptographic key, try all pairs of numbers
● Check to see if they satisfy constraints

○ Is their product the known key?
○ Are they both prime?

Compared to classical approach:

There are heuristics to narrow down numbers, so classical is not brute force

Grover’s can also take advantage of quantum algorithms
8

Clustering and classification

9

Given a set of items, how do we separate them into groups of similar items, and
predict where a new item belongs?

Real world applications:

- Image recognition – cat / dog pictures
- Identifying defective products from good ones
- Automatic sorting of recycled items
- Medical diagnostics

…

- Sorting Hat from Harry Potter

Quantum solution to clustering on difficult data sets
Given n points, there are N = 2n possible ways to assign them to two clusters

Grover’s approach:

● A clustering solution can be mapped to an n-bit number,
where the ith digit tells us which cluster point i is assigned to

● Check to see if the solution is good
○ Oracle counts the number of correctly labeled points

■ Good solution if this number is above a certain threshold
○ Takes n = O(log(N)) time to implement!

Compared to classical approach:

ML algorithms exist for some data - quantum only useful

on data sets that are hard for existing classical algorithms

10

A Quantum Searching Solution: Grover’s Algorithm
Takes advantage of qubit superposition and phase
interference to improve unstructured database search
from O(N) to O(√N)

- Note: ‘Big O’ notation provides insight on the upper bound of
the resources an algorithm needs

In the clustering example–suppose we have 10 items
to classify, to find the best solution would require us
to search over 2^10 = 1024 different clusterings!

Meanwhile, the same problem can be solved with
Grover’s algorithm on a 10-qubit quantum computer
using Hadamard gates, and 1023 guesses (worst
case classically) becomes √1024 = 32 circuit layers!

This is a quadratic speedup!
11

Outline

History and motivation of the algorithm

● Original formulation – “database” search
● Practical applications

○ Factoring
○ Clustering

● Speedups compare to classical

Algo details (Do the following slides on board)

● Formalism
● Understanding oracles as reflections rotations
● Using rotations to move closer to the answer

Final remarks
12

The Unstructured Search

Let’s now formally define the problem…

● Suppose we are given a function f on inputs x ∈ {1,...,N} and outputs either 0,
indicating a bad solution, or 1, indicating a good solution

● We’ll make two assumptions:
○ Let’s assume there’s only one good solution. That is, there exists a unique w ∈ {1,...,N} such

that f(w) = 1, and f(x) = 0 for all x ≠ w. This is the hardest case to solve!
○ Let’s also say, for convenience, that N = 2n for some integer n. This ensures we can load the

problem into the quantum computer properly
○ E.g.: f can be the loss function of a clustering model

The goal is to find w with the least number of evaluations of f(x)

13

Amplitude Amplification
Grover’s algorithm implements an amplitude amplification to increase the
probability of observing the correct answer (the “good solution”)

○ INCREASES probability amplitude associated with answer |w〉
○ DECREASES all other probability amplitudes

14

BALANCED SUPERPOSITION

NEW STATE WITH |11〉AMPLIFIED Note:

This is done through a sequence of reflections around the good solution

E.g.,|w〉= |11〉

The Unstructured Search - Quantum Oracle

The quantum oracle Uf is given as a phase oracle: Uf |x〉 = (- 1) f(x) |x〉 ; that is:

Uf |x〉 = - |x〉 if x = w is a good solution,

Uf |x〉 = |x〉 if x ≠ w

● The conventional oracle is given as Uf*|x〉 ⊗ |y〉 = |x〉 ⊗ |y ⊕ f(x)〉; we can turn it into
a phase oracle sing a |-〉 ancilla and phase kickback, similar to what is done
in the Deutsch-Jozsa Algorithm

● We always assume the underlying function, f, is easy to compute.
Uf* computes f and can write the result to a |-〉 ancilla using CNOT gates

○ In the clustering example, the oracle calculates the success rate of a clustering and compares
it to a set threshold to determine whether a solution is good (can apply to a superposition!)

○ Note it is OKAY to take O(poly(n)) time to implement Uf , since n = O(log N) 15

The Unstructured Search - Quantum Oracle

The quantum oracle Uf given as a phase oracle: Uf |x〉 = (- 1) f(x) |x〉

● The action of Uf on a state is a reflection about the superposition of bad
solutions

● Amplitude amplification is just a sequence of clever reflections that brings an
initial guess closer to the good solution! 16

Amplitude Amplification as Reflections

Starting from a uniform superposition, the Grover’s algorithm works by repeatedly
reflecting our guess around the bad solutions |w⊥〉 and our first guess |s0〉.

Each iteration increases the amplitude of |w〉 in our guess |s〉 by O(1/√N); our
guess |s〉 turns into |w〉 after √N iterations!

17

We’ll see how these
reflections brings our
guess close to a
good solution…

Initial Guess

We begin with an initial guess, the equal superposition over all possible outcomes

● Let’s call the initial guess |s0〉 = 2n/2 (|00..0〉 + |00..1〉 + … + |11..1〉)
● Since only one possible outcome (out of 2n many!) corresponds to a good

solution, the initial guess is very far away from |w〉 and close to |w⊥〉, the
superposition of all bad solutions

We can visualize |s0〉 and |w〉 as:

18

Step 1: Reflection about |w⊥〉

We have access to the Grover oracle Uf that flips the phase for only |w〉. As we’ve
seen before, this corresponds to a reflection around |w⊥〉

19

Step 2: Reflection about |s0〉

Next, we can apply the Diffusion Operator UD that reflects our guess about the
uniform superposition |s0〉

○ This oracle is easy to implement since |s0〉 is easy to prepare

20

Step 1+2: Overall effect

 Note the overall effect the two steps brings our initial guess |s0〉 closer to |w〉

○ In other words, the amplitude of |w〉 in |s0〉 is “amplified” by around 1/√N

21

The Grover Algorithm

Putting everything together:

● Initialization : Prepare uniform superposition |s0〉

22

The Grover Algorithm

● Grover Rotation (Repeat √N times):
○ Reflect |si〉 around |w⊥〉, obtain |s’i〉 = Uf|si〉

○ Reflect |s’i〉 around |s0〉, obtain |si+1〉 = UD|s’i〉
○ Magnitude of |w〉 is magnified by around 1/√N

23

The Grover Algorithm

● Measurement

With high probability, the outcome reveals |w〉

24

Additional Notes for Grover’s Algorithm

● There are a few ways to implement for the Grover oracle, Uf, but the
mechanics for the search process stay the same

● We searched for one item, but variations of Grover’s Algorithm can search
for multiple database targets

○ For t possible matches, the oracle is repeated √(N/t) times
● Partial quantum search is also possible!

○ Example: Determine if a student’s final grade falls in the lower 25%, 25–50%, 50–75% or
75–100% percentile without caring about exact ranking

● Can solve optimization problems using Grover as a subroutine
○ We can guess the optimal value using binary search, and apply Grover’s algorithm to

iteratively find good solutions that achieves the optimal values

25

A Classical Attempt

Finding a good solution can be challenging for classical computers on problems
with limited structure in potential solution space (calculating one solution does
not provide information relevant to other potential solutions)…

● Best classical approach would be a brute-force search!
● When there’s only a constant number of good solutions, the best we can hope

for is O(n) guesses on average, or around n guesses in the worst case

26

Generic Example: The Guessing Game

Pick a random number between 1 & 1024 to
be our good solution

27

1, 2, … , 1023, 1024

1024 total options
Worst case: requires 1023 calls to the

classical oracle
○ Only one correct answer
○ Incorrect guesses provide no information

This is the hardest example of an unstructured search

Let’s use a convenience example to compare the runtime guarantees. We’ll
consider a guessing game:

Simple Example: The Search Problem

28

1, 2, … , 1023,1024

1024 total options
Worst case: requires 1023 calls to the

classical oracle

In the worst case, it would take O(N) times to
locate an item in a database of size N

If random access and pre-sort are added to
implement binary search on ordered data,
search time reduces to O(log(N))

Remember, sorting procedures still require time!
Search time reduction isn’t free!

Amplitude Amplification Procedure
Step 1: Start with a balanced superposition, and
assign a phase of -1 to the chosen ket, |11〉

29

Pr
ob

ab
ili

ty
 A

m
pl

itu
de

BALANCED SUPERPOSITION

We will call the matrix that implements the phase-flip Uf

Amplitude Amplification Procedure
Step 2: Invert all probability amplitudes about the mean (average)

Average(0.5, 0.5, 0.5, -0.5) = 0.25

30

Pr
ob

ab
ili

ty
 A

m
pl

itu
de

 |11⟩ goes to 1!

We will call the matrix that inverts around the mean Uφ

 𛰌|00⟩, |01⟩, |10⟩ go to 0!

PRACTICE:
In the previous example, what matrix could be used to assign a phase of -1 to the
chosen ket, |11〉?

31

a.

b.

c.

d.

PRACTICE:
In the previous example, what matrix could be used to assign a phase of -1 to the
chosen ket, |11〉?

32

a.

b.

c.

d.

Amplitude Amplification: Two Parts

33

The Oracle flips the sign of the desired
search element

The Diffusion Operator inverts
amplitudes about the mean

How does Oracle ‘know’
what to look for?

Building the Grover Oracle:
Bird’s Eye View

1. Develop classical function, f(x), that outlines search criteria...f(x) == 1 when x is the solution
● ‘Find an input x that’s a factor of 25’
● ‘Starting with these numbers, find the arrangement in a 9x9 grid where every value appears once in a region, a row, and a

column’
● ‘Find the optimum route where I visit 300 stops only once’

34

f(x) =
0, if input x doesn’t satisfy criteria ❌
1, if x input satisfies criteria ✅

Building the Grover Oracle:
Bird’s Eye View

2. Create a reversible circuit that calculates f(x) with input x
● Reminder: we can create a REVERSIBLE circuit from an

IRREVERSIBLE circuit with ancilla!
● Reversible circuit generators help create quantum circuits

from classical computation

35

Uf
...

x

f(x) == 1
3. Add an additional ancilla with negative phase
that introduces PHASE KICKBACK when f(x) = 1

● Object of search gets a phase of -1!

Grover’s Search Mechanics
1. Identify your search problem and the data (N items) you wish to search

2. Find the smallest number n that satisfies N ≤ 2n

Input x represented with n qubits in the search algorithm … superposition via H allows us to ‘look’ at all
values at once

36

Grover’s Search Mechanics
3. Construct an Oracle, f and a gate/matrix Uf that flips the sign of the object of search

4. Run Uf that flips the sign of the object of search followed by Uφ the circuit that
inverts around the mean (we call this the Grover Diffusion Operator). Repeat this
step √N times

37

Grover’s Search Mechanics
5. Measure and read off the state with an encoding that corresponds to the desired

item in the database. Map the resulting state back to the data

38

This material is based upon work supported by the National Science Foundation
under Grants No. 1730088 and No. 1730449. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

39

Understanding the Oracle with IBM QE

We will build the circuit for a two-qubit search for 11

More examples in the qiskit textbook:
https://qiskit.org/textbook/ch-algorithms/grover.html#2qubits

40

Grover’s QASM
OPENQASM 2.0;
include "qelib1.inc";

qreg q[2];
creg c[2];

h q[0];
h q[1];
barrier q[1],q[0];
h q[1];
cx q[0],q[1];
h q[1];
barrier q[1],q[0];
h q[0];
h q[1];
x q[0];
x q[1];
h q[1];
cx q[0],q[1];
x q[0];
h q[1];
h q[0];
x q[1];
h q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];

41

Grover’s
circuit

First Stage: Create Superposition

Second Stage: Implement Oracle that flips sign

Third Stage: Implement Grover’s Diffusion Operation

42

Grover’s
circuit

43

Notes - Diana, Pranav, Kate discussion!
-How does a phase oracle exist in reality?

Mike and ike (pg 253) has a pic for grovers search
-searching for 11011...what is this?
-if you have your answer, why search for it
-when building the oracle, it is related to the problem, but it does not know the answer….solution
CHECKER

-its a classical checker of 0 if no/1 if yes (irreversible), use reversible logic generator to
produce oracle

- oracle introduces phase kickback (-1)^f(x) to put phase on true statement!
Qiskit textbook added some good detail: https://qiskit.org/textbook/ch-algorithms/grover.html

44

OLD

45

Grover’s Search Mechanics
1. Identify the data (N items) you wish to search

2. Find the smallest number n that satisfies N ≤ 2n

A total of n qubits will be used in the search algorithm (each item has a bit string ID/already represented
within states of qubits), and they will be put into superposition with H before going into the search circuit.

46

Grover’s Search Mechanics
3. Construct an Oracle, f and a gate/matrix Uf that flips the sign of the object of search

4. Run Uf that flips the sign of the object of search followed by Uφ the circuit that
inverts around the mean (we call this the Grover Diffusion Operator). Repeat this
step √N times

47

Grover’s Search Mechanics
5. Measure and read off the state with an encoding that corresponds to the desired

item in the database. Map the resulting state back to the database

6. If answer is incorrect, repeat steps 1-5. The chance of error is O(1/N)

48

