Wrap Up

Byron Zhong, July 30

A Von Neumann Machine

Input/Output

Memory Unit
CPU

A nhew perspective...

* Variables (data) and functions (code) live in memory
« Memory is a contiguous storage of bytes
 Each byte has an address -- variables and functions have addresses

 When executing a program, CPU fetches an instruction from memory and performs
actions:

 Read (n bytes) from an address to a register, write (n bytes) to an address to a register
 Manipulate the bits in registers -- computation
 Jump to another instruction, check for conditions, ...

 The compiler clang translates your C program into these instructions

A nhew perspective...

A process's memory Is partitioned into

* The stack: the compiler uses this to manage local variables. Stack frames come and
go as functions are called and return

* The heap: you use this to store data with complicated lifetime

* ptr malloc(n);
 free(ptr);
* One malloc, one free

* Code, global variables, string literals ...

* Virtual memory: OS gives each process its own memory address space (0 -- FFFFFFF...)

A nhew perspective...

 Data and code are just bits

* A bit answers a yes/no question -- we specify what the questions are by
agreeing on an encoding

* Unsignhed integer encoding -- each bit indicates the presence of a power of
2

* Signed integer encoding (2's complement) -- the highest bit is negative
 We can come up with our own encodings (e.g. student record)

* Jypes are used to keep track of the encodings

A nhew perspective...

o Statically, we can organize data...

o ... Of different types into a struct

* to represent a real-world object

* to group variables that are dependent (invariants)
e ... of the same type into an array

* to represent multiple instances of the same thing

* to apply the same action repeatedly

 Compiler translates structs and arrays access into direct memory access

A nhew perspective...

 Dynamically, we can organize data as:

e 1ist: an ordered segquence

* |f we use pointers to keep track of the order -- linked list
* Easy to reorder, insert, delete, ...

* |[f we use relative memory position to keep track of the order -- arraylist
* Easy to access specific element

* map: a collection of key-value pairs

* BST -- if the keys are ordered

* Hash Table -- if the keys can be converted to an integer -- need to handle collision

Topics Covered

Memory:

* \ariables and types

Array

Types

Pointers

Pass by reference
Function frames
Stack and Heap

Data structure:

Array List
Linked List
Tree & BST
Hash Table
Max Heap

Selection, insertion,
bubble sort

Tree sort, heap sort,
Counting sort

Bits:

Bitwise operations
Integer representation
Bit-packing

Masks

Binary and hex
Endianness

Other:

Threads

Virtual memory
Dynamic dispatch
Terminal

Git

Compiler
Makefile

Valgrind

Machine structure

Review
C

e All operators:
e Unary: 'x ~x -x x++ ++x x-- —--X
* Binary:
e Arithmetic:x + v, x - v, x * v, x / y({wokinds), x % v,
e Comparison: x ==y, x !'=vy, x >y, x <y, x > vy, X <=

e Bitwise:x & v, x | vy, x Y vy, x <<y, X >> vy

Review
C

* All operators: (Cont.)

e Pointers: *a, &a

Pointers

Review

type : 1nt
value: 25

o

type : 1nt
value: 100

int
100

type : 1nt
value: 108

* %

type : 1nt
value: 25

int

I—-I 100

25

Bl

108

int *

100

error
type : 1nt *
value: 100

type : 1nt
value: 25

Review

C

* All operators: (Cont.)

e Pointers: *a, &a

e Subscript and member:

a.field

e a[blisashorthandof * (a + b)

a—>

field Is ashort hand of (*a)

.field

Review
C

* All operators: (Cont.)

e Pointers: *a, &a

o Subscript and member: a.field, a[b], a->field

)

o Jernary conditional:a ? b : c(InPython:b if a else c¢)

o [ype cast: (type) x

Bits

Endian

* We think of an integer as one atomic value:
e nt x = 0x1AZB3C4D;

* But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

0 1 2 3

: . Most significant

0 1 2 3

byte first

Bits

Endian

int main(voild)

{
int x = 0x1AZB3C4D;

char *ptr = (char *) &x;

for (int i = 0; i < 4; +4++1i) {
printf ("Ox%Shhx\n", ptrli]);
}

return 0O;

Review

Function Frames

 When a function returns, we can recycle the memory used by the variables
declared inside the function.

 Variables declaredin { .. } canonly be accessedin { .. } (Scope)

* | ocal variables and arguments live in a frame.

Variable Lifetime

int f£f(int Xx)

{
int y = x * 2Z;
return vy;

}

int main (void)

{
int a = £(10);
int b = f(a);
printf ("%d\n", b);

return 0O;

Variable Lifetime

int f£f(int Xx)

{

}

int y = x * 2Z;
return vy;

int main(void)

{

int a = £(10);
int b = f(a);
printf ("sd\n",

return 0O;

b);

mailin

: P9

: P9

Variable Lifetime

int f(int x)

{
int y = x * 2Z;
return vy;

}

int main(void)
{
int a = £(10);
int b = f(a);
printf ("sd\n",

return 0O;

b);

mailin

?7?

10

?7?

?7?

Variable Lifetime

int f(int x)

{
int y = x * 2Z;
return vy;

}

int main(void)
{
int a = £(10);
int b = f(a);
printf ("sd\n",

return 0O;

b);

mailin

20

10

?7?

?7?

Variable Lifetime

int f(int x)

{
int y = x * 2Z;
return vy;

}

int main(void)
{
int a = £(10);
int b = f(a);
printf ("sd\n",

return 0O;

b);

mailin

20

10

?7?

20

Variable Lifetime

int f£f(int Xx)

{

}

int y = x * 2Z;
return vy;

int main(void)

{

int a = £(10);
int b = f(a);
printf ("sd\n",

return 0O;

b);

mailin

: P9

: 20

Variable Lifetime

int f(int x)

{
int y = x * 2Z;
return vy;

}

int main(void)
{

int a = £(10);
int b = f(a);
printf ("sd\n",

return 0O;

b);

mailin

?7?

20

?7?

20

Variable Lifetime

int f(int x)

{
int y = x * 2Z;
return vy;

}

int main(void)
{
int a = £(10);
int b = f(a);
printf ("sd\n",

return 0O;

b);

mailin

40

20

?7?

20

Variable Lifetime

int f(int x)

{
int y = x * 2Z;
return vy;

}

int main(void)
{
int a = £(10);
int b = f(a);
printf ("sd\n",

return 0O;

b);

mailin

40

20

40

20

Variable Lifetime

int f£f(int Xx)

{

}

int y = x * 2Z;
return vy;

int main(void)

{

int a = £(10);
int b = f(a);
printf ("sd\n",

return 0O;

b);

mailin

: 40

: 20

Variable Lifetime

int f£f(int Xx)

{
int y = x * 2Z;
return vy;

}

int main (void)

{
int a = £(10);
int b = f(a);
printf ("%d\n", b);

return 0O;

The Heap

main

The Stack

The Heap

Stack vs Heap

Stack Heap
 Acquire memory: * Acquire memory:
» declare variables * ptr = malloc (n)
» size: compiler calculates before ®* size: you provide during running
running (static) (dynamic)
* Release memory: * Release memory:
* do nothing * free(ptr)
 You can't forget to release * You can forget to release;
memory leak

* Accessing released memory is bad;
memory error

Data Structures

Week 4 onwards

Data Data

Data

Data structure Data structure

Unboxed Boxed

 Boxed: Nodes store pointers to client.-managed data. (Polymorphic)
 Unboxed: Data would be stored directly in the nodes. (Faster access)

Data Structures

e Establishing structures on the heap:
* |ndices: contiguous

e O(1) random access

 difficult to reorder and reallocate
 Pointer: scattered

* sequential access

» easy to reorder and reallocate

Indices Pointers
List Array List Linked List
Map Hash Table BST

Array

Growing an array

e Pointers serve as an indirection.

 We aren't changing the size of the array; we

are changing which array the pointers point
to.

* By changing the address of the pointer, it

seems to the user that we have changed the
size of the array.

 We create and delete memory however we
want thanks to the heap. int *

mailin

Array

Boxed Array

void **

mailin

Linked Lists

list

user's data

N

user's data

user's data

user's data

NULL

Binary Search Tree

* A binary search tree is a binary tree where
 For a given node n with key K,
* All nodes with keys less than k are in n's left subtree.

* All nodes with keys greater than k are in n's right subtree.

Height

Remove

Hash Table

Review

» Nice O(1) complexity because we can index into an array instead of chasing
pointers

 We have a way to turn anything into an integer -- hash function

 We have a way to force any integers into a reasonable range -- compression
(usually modulus)

e We need to handle collisions:
 Collisions can be the result of the hash function

¢ ... of compression

Hash Table

Chaining

 Each slot is a list of key-value pairs, called a bucket

0
e Collisions will be prepended into the list
il s

© 00 N O O~ WD | =
oh)
H
H
Ol
—t
Ol
o
I>

Hash Table

Linear probing

o

=N

2

3 ("bob", 30)

4 ("carl”, 50)

5 f)

6 ("eve", 100)
7 ("david", 60)
8

9

struct bucket {

rols ey
| _ vold *key;
previously occupied void *value:

};

* Find/Remove:
* Move down until first empty bucket
* |f tombstone is encountered, continue searching
* |nsert:
* Move down until first empty bucket
e |f tombstone is encountered, we can reuse that bucket

 But to avoid inserting duplicate keys, we need to
continue searching until an unremoved bucket

Sorting

. O(n?): Selection, Insertion, Bubble
« O(nlogn): Tree, Merge, Quick

» O(nlogn) without extra space (not even a stack): Heap sort

 Heap sort is "selection sort with the right data structure.”

» https://qgithub.com/uchicago-cmsc14300-smr24/starter/blob/main/sort/sort.c

https://github.com/uchicago-cmsc14300-smr24/starter/blob/main/sort/sort.c

Machine

Your computer can do many things at the same time...

* The operating system creates an illusion that each process is running by itself
by:

* Context switching -- rapidly switching which process has control over the
CPU

e Virtual memorv -- providing each process with its own address space

Operating System (0OS)

e
-
O
e
-
<
e
-
Q
=

Virtual Memory

Virtual memory

Get address 18 mmmmm 0N

Physical memory

0

11

process 3

Page Table

Get address 204

77

19

process 2

80

CPU

 CPU can do this
translation very
efficiently

* The chunks of
memory used to be
called segments.

* segmentation fault!

Context Switching

 Each process has its own
* Virtual memory
* Registers
 Program counter

 OS keeps track of these data in its internal data structure.

Threads

® © zf:i;itixgnimr 0 @O @v CPU Memory Energy Disk Network Q Search
Process Name Memory v Ports PID User
\/ https://www.gradescope.com 1.80 GB 93 17547 byron
WindowServer 1.54 GB 3,883 150 _windowserver
Keynote 971.9 MB 813 17566 byron
Music 871.5 MB 1,940 13588 byron
\/ https://canvas.uchicago.edu 799.5 MB 140 17545 byron
-= Preview 535.1 MB 447 16935 byron
& Finder 518.1 MB 957 478 byron
@ Ssafari 419.9 MB 3,624 439 byron
Terminal 397.2 MB 327 442 byron
O QuickLookUlIService (Messages) 305.9 MB 348 17251 byron
Slack Helper (Renderer) 289.7 MB 246 893 byron
O https://www.google.com 271.2 MB 93 18017 byron
Q Messages 218.3 MB 740 13651 byron
__|_1Pacewnrd Safari Weh Fytancinn 215 2 MR]8K 017 huron
MEMORY PRESSURE Physical Memory: 32.00 GB

Memory Used: 22.76 GB A;.>p Memory: 16.07.GB

Cached Files: o5ace | rodMemory: 22068

Compressed: 1.98 GB

s Swap Used: 0 bytes

Threads

* A thread is a unit of execution. Each thread has its own:
 Thread ID
o Stack
 Program counter (pc)
* Registers
* A process contains a number of threads. Threads within a process share:
 Code, data

* [hreads are executed concurrently.

Threads

Thread 1 Thread 2
(main thread) | (peer thread)

} Thread context switch
Time

} Thread context switch

} Thread context switch

What next?

* Data structure, complexity, sorting:
e CMSC 27200. Theory of Algorithms
* File, permanent storage, bits:
« CMSC 23500. Introduction to Database Systems
* Memory, instructions, language:
e CMSC 14400 Systems Programming I
e CMSC 22200. Computer Architecture
e CMSC 22600. Compilers for Computer Languages

... and many more!

« Communication, bits, systems:

e CMSC 23300. Networks and Distributed Systems
e Concurrency, threads, scheduling:

« CMSC 23000. Operating Systems

e CMSC 23010. Parallel Computing

Study for Final

* Binary, hex, decimal conversion (both signed and unsigned)
* Your homework solutions
* Tagged union
* Write a tagged union called Car with variants SUV, Sedan, Truck
* Array List
 Malloc and realloc
* Linked List
* Write a traversal by hand
e BST
 What are the properties of a BST? Draw a binary tree that is not a BST.
 Write a "map_get" by hand

Study for Final

Cont.

e Sorting
* |nsertion, Selection, Bubble: In each iteration, where do we look”? What is swapped?
 Merge sort: How to merge two sorted lists?
* Quick sort: Why partitioning sorts the list?
 Heap sort: Visually, how do insertion and removal look like?
 Hash table
 What is a good hash function? What is a problematic hash function?
* Chaining
* Probing -- why do we need tombstones?

