Maps & BST

CS143: lecture 13

Lists

Recap

- Lists: [**), **), **, **)
- It is an ordered collection of elements:
 - Ordered: 1st, 2nd, 3rd, ...
 - Elements can be homogeneous or heterogeneous.
- Elements are referred to by their *index*
- What if we want to use something other than a number?

• What if we want to build a *mapping* between one element to another element?

- Maps!
 - aka dictionaries, associative array...
- A map is a data structure that stores key-value pairs
 - Each key appears at most once

Operations

- insert(k, v)
- remove(k)
- lookup(k)
- size
- traverse (to visit all)

Can we use lists?

- Yes!
- Each element of the list can be a pair (key, value)
- insert(k, v):
 - append((k, v))
- lookup(k):
 - Go through the entire list and compare each k
- remove(k):
 - lookup(k) and remove

Maps Complexity

	lookup average worst		ins	ert	remove		
			average	worst	average worst		
ArrayList	O(n)	O(n)	O(1)	O(n)	O(n)	O(n)	
Linked List	ist O(n) O(n)		O(1)	O(1)	O(1) O(1)		

Can we do better with lists?

- What if we can sort the keys?
- Lookup is faster
 - We can do binary search

Binary Search

Find 19

1	4	6	7	9	12	17	19	25	30	35

Binary Search

Find 19

		1	4	6	7	9	12	17	19	25	30	35
--	--	---	---	---	---	---	----	----	----	----	----	----

Binary Search

Find 19

1	4	6	7	9	12	17	19	25	30	35

Can we do better with lists?

- What if we can sort the keys?
- Lookup is faster
 - We can do binary search
 - To search a sorted list with n elements, we only need $O(\log_2 n)$
- However
 - ArrayList is bad at insert
 - Linked list is bad at random access

Maps Complexity

	lookup average worst		ins	ert	remove		
			average	worst	average worst		
ArrayList	O(n)		O(1) O(n)		O(1)		
Linked List	O(n)		0	(1)	O(1)		
ArrayList (sorted)	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		O	(n)	O(n)		
Linked List (sorted)	O(n)		0	(1)	O(1)		

Can we have the benefits of both?

- Yes!
- New data structure: Binary Search Tree!

data
ptr ptr ...

• Like a linked list, but have 1 or more next pointers.

- A tree can be empty (NULL) or a node
 - where a node contains some data plus 1 or more pointers pointing to trees.

A non-empty tree has a root

A non-empty tree has a root

data
ptr ptr ...

A parent node points to multiple child nodes.

- A parent node points to multiple child nodes.
- Every node has exactly one parent, except the root which has no parents.

- A tree can be either
 - empty, or
 - a node contains some data plus 1 or more pointers pointing to trees (subtrees).
- A parent node points to multiple child nodes.
- Every node has exactly one parent, except the root which has no parents.

- A tree can be either
 - empty, or
 - a node contains some data plus 1 or more pointers pointing to trees (subtrees).
- A parent node points to multiple child nodes.
- Every node has exactly one parent, except the root which has no parents.

```
struct llist {
    void *elem;
    struct llist *next;
};
```


Binary Tree

- A tree can be either
 - empty, or
 - a node contains some data plus 2 pointers pointing to trees (subtrees).
- A parent node points to multiple child nodes.
- Every node has exactly one parent, except the root which has no parents.

Is this a binary tree?

Is this a binary tree?

Is this a binary tree?

Binary Search Tree

- A binary search tree is a binary tree where
- For a given node n with key k,
 - All nodes with keys less than k are in n's left subtree.
 - All nodes with keys greater than k are in n's right subtree.

Is this a BST?

Is this a BST?

Is this a BST?

Binary Search Tree

- A binary search tree is a binary tree where
- For a given node n with key k,
 - All nodes with keys less than k are in n's left subtree.
 - All nodes with keys greater than k are in n's right subtree.

- For a given node *n* with key *k*,
 - If *k* is what we want, return the data.
 - If what we want < k, explore left
 - If what we want > k, explore right
- Complexity?
 - O(height)

- Tree is empty: Make new node, set it as root
- If item < key, insert left
- If item > key, insert right
- if Item == key, replace the node
- Complexity?
 - 1. Find correct spot in tree to insert O(height)
 - 2. Create a new node and return pointer O(1)

Height

Height

Height

Height

Height

Height

Height

Height

Height

Balanced

Unbalanced

Complexity

- lookup, insert:
 - $O(\log n)$ for a well-balanced BST
 - O(n) in general :(
- There are self-balancing BSTs
 - Red-black trees, AVL trees, ...

Remove

- First, find node to remove
 - same in lookup and insert
- Easy case: the node is a leaf
 - Delete it
 - Don't forget to update the parent's pointer

Remove

• Harder case: node to be removed has one child

Remove

Harder case: node to be removed has one child

Remove

Harder case: node to be removed has one child

Bypass this node

Remove

Harder case: node to be removed has one child

Bypass this node

- Harder case: node to be removed has one child
 - Bypass this node

- Harder case: node to be removed has one child
 - Bypass this node

- Harder case: node to be removed has one child
 - Bypass this node

Remove

Hardest case: node to be removed has two children

- Hardest case: node to be removed has two children
 - Replace 12 with a value that's:
 - Larger than everything in left subtree
 - Smaller than .. in right ...

- Hardest case: node to be removed has two children
 - Replace 12 with a value that's:
 - Larger than everything in left subtree
 - Smaller than .. in right ...

- Hardest case: node to be removed has two child
 - Replace 12 with a value that's:
 - Larger than everything in left subtree
 - Smaller than .. in right ...

- Hardest case: node to be removed has two child
 - Replace 12 with a value that's:
 - Larger than everything in left subtree
 - Smaller than .. in right ..

Remove

Hardest case: node to be removed has two children

• Find min(right substree), replace

Call remove recursively on min(right subtree)

• This recursive call will only happen once.

• min(right subtree) cannot have both children.

- 1. Find node to remove
- Easy case: node is leaf -- delete
- Harder case: node to remove has one child -- bypass
- Hardest case: node to remove has both
 - Find min(right subtree) -- replace
 - Remove min(right subtree)

Remove Complexity

- 1. Find node to remove <-- O(height)
- Easy case: node is leaf -- delete <-- O(1)
- Harder case: node to remove has one child -- bypass <-- O(1)
- Hardest case: node to remove has both
 - Find min(right subtree) -- replace <-- O(height)
 - Remove min(right subtree)

Remove

Overall complexity:

$$O(\text{height}) + O(1) + O(1) + O(\text{height}) = O(\text{height})$$

Same as insert and lookup.

Maps Complexity

	lookup		insert		remove	
	average	worst	average	worst	average	worst
ArrayList	O(n)		O(1)	O(n)	O(1)	
Linked List	O(n)		O(1)		O(1)	
ArrayList (sorted)	O(log n)		O(n)		O(n)	
Linked List (sorted)	O(n)		O(1)		O(1)	
BST	O(log n)	O(n)	O(log n)	O(n)	O(log n)	O(n)

Back to sorting

 If we have a BST, how can we visit all nodes in sorted order?

• pre-order traversal: curr first, then both children

• in-order traversal: left child, curr, right child

post-order traversal: both children, then curr

SortingIn-order Traversal

Sorting

In-order Traversal

Sorting

Pre-order Traversal

Sorting

Post-order Traversal