
Byron Zhong, July 11

Maps & BST
CS143: lecture 13

Lists
Recap

• Lists: [🍏, 🍎, 🍐, 🍊, 🍋]

• It is an ordered collection of elements:

• Ordered: 1st, 2nd, 3rd, ...

• Elements can be homogeneous or heterogeneous.

• Elements are referred to by their index

• What if we want to use something other than a number?

Maps

• What if we want to build a mapping between one element to another
element?

• { 🍏 : ⚽, 🍎 : 🏀, 🍐 : 🏈, 🍊 : ⚾, 🍋 : 🥎 }

• Maps!

• aka dictionaries, associative array...

• A map is a data structure that stores key-value pairs

• Each key appears at most once

Maps
Operations

• insert(k, v)

• remove(k)

• lookup(k)

• size

• traverse (to visit all)

Maps
Can we use lists?

• Yes!

• Each element of the list can be a pair (key, value)

• insert(k, v):

• append((k, v))

• lookup(k):

• Go through the entire list and compare each k

• remove(k):

• lookup(k) and remove

Maps
Complexity

lookup insert remove

average worst average worst average worst

ArrayList O(n) O(n) O(1) O(n) O(n) O(n)

Linked List O(n) O(n) O(1) O(1) O(1) O(1)

Maps
Can we do better with lists?

• What if we can sort the keys?

• Lookup is faster

• We can do binary search

Binary Search

1 4 6 7 9 12 17 19 25 30 35

Find 19

Binary Search

1 4 6 7 9 12 17 19 25 30 35

Find 19

Binary Search

1 4 6 7 9 12 17 19 25 30 35

Find 19

Maps
Can we do better with lists?

• What if we can sort the keys?

• Lookup is faster

• We can do binary search

• To search a sorted list with n elements, we only need

• However

• ArrayList is bad at insert

• Linked list is bad at random access

O(log2 n)

Maps
Complexity

lookup insert remove

average worst average worst average worst

ArrayList O(n)	 O(1) O(n) O(1)

Linked List O(n)	 O(1)	 O(1)

ArrayList
(sorted) O(log n) O(n) O(n)

Linked List
(sorted) O(n) O(1) O(1)

Maps
Can we have the benefits of both?

• Yes!

• New data structure: Binary Search Tree!

Trees

• Like a linked list, but have 1 or more next pointers.

data

ptr ptr ...

Trees

• A tree can be empty (NULL) or a node

• where a node contains some data plus 1 or more pointers pointing to trees.

data

ptr ptr ...

Trees

• A non-empty tree has a root

data

ptr ptr ...

Trees

• A non-empty tree has a root

data

ptr ptr ...

Trees

• A parent node points to multiple child nodes.

data

ptr ptr ...

Trees

• A parent node points to multiple child nodes.

• Every node has exactly one parent, except the root which has no parents.

data

ptr ptr ...

Trees

• A tree can be either

• empty, or

• a node contains some data plus 1 or more pointers pointing to trees
(subtrees).

• A parent node points to multiple child nodes.

• Every node has exactly one parent, except the root which has no parents.

Trees

• A tree can be either

• empty, or

• a node contains some data plus 1 or more pointers pointing to trees
(subtrees).

• A parent node points to multiple child nodes.

• Every node has exactly one parent, except the root which has no parents.

Trees

struct tree_node {
 void *elem; /* the elem in this node */
 struct tree_node *left; /* pointer to the left subtree */
 struct tree_node *right; /* pointer to the right subtree */
};

struct llist {
 void *elem;
 struct llist *next;
};

Is this a tree?

1

Is this a tree?

1

123 0

3 6

Is this a tree?

1

0

6

10

Is this a tree?

1

0 10

Is this a tree?

1

0 10

10

Is this a tree?

Binary Tree

• A tree can be either

• empty, or

• a node contains some data plus 2 pointers pointing to trees (subtrees).

• A parent node points to multiple child nodes.

• Every node has exactly one parent, except the root which has no parents.

Is this a binary tree?

1

123 0

3 6

Is this a binary tree?

1

0

6

10

Is this a binary tree?

Binary Search Tree

• A binary search tree is a binary tree where

• For a given node n with key k,

• All nodes with keys less than k are in n's left subtree.

• All nodes with keys greater than k are in n's right subtree.

Is this a BST?

1

0 10

Is this a BST?

1

Is this a BST?

1

0 10

5 20

Is this a BST?

6

0 10

5 20

Is this a BST?

6

10

20

Is this a BST?

17

12 57

40 841 20

Is this a BST?

17

12 57

40 841 ?

Binary Search Tree

• A binary search tree is a binary tree where

• For a given node n with key k,

• All nodes with keys less than k are in n's left subtree.

• All nodes with keys greater than k are in n's right subtree.

BST
Look up 16

17

12 57

40 841 16

BST
Look up 16

17

12 57

40 841 16

BST
Look up 16

17

12 57

40 841 16

BST
Look up 16

17

12 57

40 841 16

BST
Look up

• For a given node n with key k,

• If k is what we want, return the data.

• If what we want < k, explore left

• If what we want > k, explore right

• Complexity?

• O(height)

BST
Insert 18

17

12 57

40 841 16

BST
Insert 18

17

12 57

40 841 16

BST
Insert 18

17

12 57

40 841 16

BST
Insert 18

17

12 57

40 841 16

BST
Insert 18

17

12 57

40 841 16

18

BST
Insert

• Tree is empty: Make new node, set it as root

• If item < key, insert left

• If item > key, insert right

• if Item == key, replace the node

• Complexity?

1. Find correct spot in tree to insert

2. Create a new node and return pointer

O(height)

O(1)

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

12

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

12 57

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

12 57

1

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

12 57

1 16

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

12 57

401 16

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

12 57

40 841 16

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

• Height: 3, #elements: 7

• height = log2(#elements + 1)
17

12 57

40 841 16

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

12

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

12

16

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

12

16

17

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

12

16

17

40

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

12

16

17

40

57

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

12

16

17

40

57

84

BST
Height

1

12

16

17

40

57

84

17

12 57

40 841 16

Balanced Unbalanced

BST
Complexity

• lookup, insert:

• for a well-balanced BST

• in general :(

• There are self-balancing BSTs

• Red-black trees, AVL trees, ...

O(log n)

O(n)

BST
Remove

• First, find node to remove

• same in lookup and insert

• Easy case: the node is a leaf

• Delete it

• Don't forget to update the parent's pointer

BST
Remove

• Harder case: node to be removed has one child

BST
Remove

• Harder case: node to be removed has one child

17

12 57

40 841

BST
Remove

• Harder case: node to be removed has one child

• Bypass this node
17

12 57

40 841

BST
Remove

• Harder case: node to be removed has one child

• Bypass this node
17

57

40 841

BST
Remove

17

12 57

40 8413

• Harder case: node to be removed has one child

• Bypass this node

BST
Remove

17

12 57

40 8413

• Harder case: node to be removed has one child

• Bypass this node

BST
Remove

17

57

40 8413

• Harder case: node to be removed has one child

• Bypass this node

BST
Remove

• Hardest case: node to be removed has two children

17

12 57

40 8410 14

1 11 13 15

BST
Remove

• Hardest case: node to be removed has two children

• Replace 12 with a value that's:

• Larger than everything in left subtree

• Smaller than .. in right ..

17

12 57

40 8410 14

1 11 13 15

BST
Remove

• Hardest case: node to be removed has two children

• Replace 12 with a value that's:

• Larger than everything in left subtree

• Smaller than .. in right ..

17

12 57

40 8410 14

1 11 13 15

BST
Remove

• Hardest case: node to be removed has two child

• Replace 12 with a value that's:

• Larger than everything in left subtree

• Smaller than .. in right ..

17

12 57

40 8410 14

1 11 13 15

BST
Remove

• Hardest case: node to be removed has two child

• Replace 12 with a value that's:

• Larger than everything in left subtree

• Smaller than .. in right ..

17

13 57

40 8410 14

1 11 15

BST
Remove

• Hardest case: node to be removed has two children

• Find min(right substree), replace

• Call remove recursively on min(right subtree)

• This recursive call will only happen once.

• min(right subtree) cannot have both children.

17

13 57

40 8410 14

1 11 15

BST
Remove

1. Find node to remove

• Easy case: node is leaf -- delete

• Harder case: node to remove has one child -- bypass

• Hardest case: node to remove has both

• Find min(right subtree) -- replace

• Remove min(right subtree)

BST
Remove Complexity

1. Find node to remove

• Easy case: node is leaf -- delete

• Harder case: node to remove has one child -- bypass

• Hardest case: node to remove has both

• Find min(right subtree) -- replace

• Remove min(right subtree)

<-- O(height)

<-- O(1)

<-- O(1)

<-- O(height)

<-- O(height)

BST
Remove

Overall complexity:

 =

Same as insert and lookup.

O(height) + O(1) + O(1) + O(height) O(height)

Maps
Complexity

lookup insert remove

average worst average worst average worst

ArrayList O(n)	 O(1) O(n) O(1)

Linked List O(n)	 O(1)	 O(1)

ArrayList
(sorted) O(log n) O(n) O(n)

Linked List
(sorted) O(n) O(1) O(1)

BST O(log n) O(n) O(log n) O(n) O(log n) O(n)

Back to sorting

• If we have a BST, how can we visit all nodes in sorted
order?

• pre-order traversal: curr first, then both children

• in-order traversal: left child, curr, right child

• post-order traversal: both children, then curr

17

13 57

40 8410 14

1 11 15

Sorting
In-order Traversal

void walk(struct tree_node *tree,
 void (*visit)(void *key, void *value, void *data),
 void *data);

Sorting
In-order Traversal

void walk(struct tree_node *tree,
 void (*visit)(void *key, void *value, void *data),
 void *data)
{
 if (tree == NULL) {
 return;
 }
 walk(tree->left, visit, data);
 visit(tree->key, tree->value, data);
 walk(tree->right, visit, data);
}

Sorting
Pre-order Traversal

void walk(struct tree_node *tree,
 void (*visit)(void *key, void *value, void *data),
 void *data)
{
 if (tree == NULL) {
 return;
 }
 visit(tree->key, tree->value, data);
 walk(tree->left, visit, data);
 walk(tree->right, visit, data);
}

Sorting
Post-order Traversal

void walk(struct tree_node *tree,
 void (*visit)(void *key, void *value, void *data),
 void *data)
{
 if (tree == NULL) {
 return;
 }
 walk(tree->left, visit, data);
 walk(tree->right, visit, data);
 visit(tree->key, tree->value, data);
}

