
Byron Zhong, June 25

Pointers II
CS143: lecture 8
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Memory Array

• Each row of data is called a word. Most memories use 8-bit word, a byte.


•  memory array.  is the size of an address.  is the smallest 
addressable unit.


• An address causes the enable lines of all bit cells in a row to turn on, and their 
contents are read/written simultaneously.


• On modern machines,  is almost always 8.


• What is , the size of a memory address?


• 64 on 64-bit machine, 32 on 32-bit machine.

2N-word × M-bit N M

M

N



Memory Array

•  = 4,294,967,296 = ~4.3 G of addressable rows.


• 4.2 gigabytes of addressable memory.


• In order to use beyond 4.2GB, memory addresses need to be bigger.


•  = 18,446,744,073,709,551,616 = 18 exabytes = ~4.2 million gigabytes

232

264



Endian

• We think of an integer as one atomic value:

• int x = 0x1A2B3C4D;


• But if an integer has 4 bytes and each byte is addressable, which of the 4 
bytes is stored first?

1A 2B 3C 4D

0 1 2 3

4D 3C 2B 1A

0 1 2 3

Big-endian -->

Little-endian -->

Most significant 
byte first

Least significant 
byte first



Endian

• Is my machine little-endian or big-endian?


• Let's find out!



Endian

• Our machine is little-endian?????


• We usually write numbers in big-endian: 345 is three hundred and forty-five


• But there are some advantages for little-endian:


• comparing two numbers of different length (long and int e.g.)

• 4E3C2B1A 

• 4E3C2B1A00000000

• addition, subtraction circuits work from low to high

• etc.



Endian
Does it matter?

• Mostly we don't care. Unless you do memory trickery, variables work as 
you would expect


• However, when we serialize data into byte sequences, you need to pay 
extra attention:


• Writing a number to a file


• Sending a number over a network


• You and the reader must agree on byte order


• For this purpose, network byte order is defined for TCP/IP



struct
Making your own types

• Data placed in memory can be: char, short, int, long, float, 
double


• What if you want to store something other than a number?

• Student?

• Course?

• House?

• ...


• You use numbers to represent them; you digitize them.

• In C, we can use structures to bundle data together.



struct
Syntax

struct student { 
        char first_name[32]; 
        char last_name[32]; 
        float gpa; 
}; 

int main(void) 
{ 
        struct student john; 

        strcpy(john.first_name, "John"); 
        strcpy(john.last_name, "Doe"); 
        john.gpa = 3.0; 

        printf("%s %s: %.2f\n", john.first_name, john.last_name, john.gpa); 

        return 0; 
}

Don't forget the ;

Don't forget the word struct

Assignment (=) doesn't work 
with arrays



struct student { 
        char first_name[32]; 
        char last_name[32]; 
        float gpa; 
}; 

int main(void) 
{ 
        struct student john; 

        strcpy(john.first_name, "John"); 
        strcpy(john.last_name, "Doe"); 
        john.gpa = 3.0; 

        printf("%s %s: %.2f\n", john.first_name, john.last_name, john.gpa); 

        return 0; 
}

struct
Syntax

char[32]

100
struct 
student x
char[32] 

float

john.first_name

john.last_name
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struct student { 
        char first_name[32]; 
        char last_name[32]; 
        float gpa; 
}; 

void print_student(struct student s) 
{ 
        printf("%s %s: %.2f\n", s.first_name, s.last_name, s.gpa); 
} 

int main(void) 
{ 
        struct student john; 
        ... 
        print_student(john); 

        return 0; 
}

struct
Structures are passed by value
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struct student { 
        char first_name[32]; 
        char last_name[32]; 
        float gpa; 
}; 

void print_student(struct student *s_p) 
{ 
        printf("%s %s: %.2f\n", (*s_p).first_name, 
                                (*s_p).last_name, 
                                (*s_p).gpa); 
} 

int main(void) 
{ 
        struct student john; 
        ... 
        print_student(&john); 

        return 0; 
}

struct
Structures are passed by value

char[32]
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struct student { 
        char first_name[32]; 
        char last_name[32]; 
        float gpa; 
}; 

void print_student(struct student *s_p) 
{ 
        printf("%s %s: %.2f\n", s_p->first_name, 
                                s_p->last_name, 
                                s_p->gpa); 
} 

int main(void) 
{ 
        struct student john; 
        ... 
        print_student(&john); 

        return 0; 
}

struct
Structures are passed by value

char[32]

100
struct 
student john
char[32] 

float
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student* s_p

100s_p->gpa is a shorthand 
for (*s_p).gpa 

Btw, *s_p.gpa is read as 
*(s_p.gpa), which is an 
error



Choices
enum

enum major { 
        ANTHROPOLOGY, 
        ARCHITECTURAL_STUDIES, 
        ART_HISTORY, 
        ASTRONOMY_ASTROPHYSICS, 
        BIG_PROBLEMS, 
        BIOLOGICAL_CHEMISTRY, 
        ... 
}; 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Major

Grade

Late Days

Year

Enrollment
unsigned short

• Nothing fancy here: C just assigns an 
integer sequentially for each choice.


• Can use them as global constants


• if (major == 2) { ... } 

• if (major == ART_HISTORY) 
{ ... } 



Choices
enum

enum major { 
        ANTHROPOLOGY, 
        ARCHITECTURAL_STUDIES, 
        ART_HISTORY, 
        ASTRONOMY_ASTROPHYSICS, 
        BIG_PROBLEMS, 
        BIOLOGICAL_CHEMISTRY, 
        ... 
}; 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Major

Grade

Late Days

Year

Enrollment
unsigned short

enum major student_major = STATISTICS; 

enum major student_major = 3;

clang will not 
complaint about this. 
But this is bad style.



Choices
switch
if (major == ANTHROPOLOGY) { 
        ... 
} else if (major == ARCHITECTURAL_STUDIES) { 
        ... 
} else if (major == ART_HISTORY) { 
        ... 
} else if (major == ASTRONOMY_ASTROPHYSICS) { 
        ... 
} else if (major == BIG_PROBLEMS) { 
        ... 
} ... 

switch (major) { 
case ANTHROPOLOGY: 
        ...; 
        break; 
case ARCHITECTURAL_STUDIES: 
        ...; 
        break; 
case ART_HISTORY: 
        ...; 
        break; 
case BIOLOGICAL_CHEMISTRY: 
        ...; 
        break; 
case BIG_PROBLEMS: 
        ...; 
        break; 
default: 
        break; 
} 

break signals the end 
of a case. Without 
break, C will execute 
the next case, falling 
through another case.

The default branch is 
run when the major 
matches none of the 
above cases.



Choices
switch

• Why switch?


• Cleaner code


• More efficient than if ... else if ... chain:


• C stores the branches in a table, and switch will jump to the branch instead 
of comparing one by one


• switch(x), x has to be an integer.


• break is critical! Forgetting the break is really difficult to debug.



Choices
switch

• Demo!



File I/O

• Memory is volatile. It loses data when power is removed.


• Files are stored on non-volatile storage media such as hard drives. It does not 
need power to preserve data.


• Memory supports random access. One can access memory at any address 
directly.


• Hard drives only support sequential access.


• C abstracts file system access via FILE *.


