
Byron Zhong, June 25

Pointers II
CS143: lecture 8

1

1

1

1

0

0

0

0

0

0

Bit Line

Enable
Line

Inverted
Bit Line

Bit Cell
1

Bit Line

Enable

Bit Cell
1

Bit Line

Enable

Bit Cell
1

Bit Line

Enable

Bit Cell
0

Bit Line

Enable

Bit Cell
0

Bit Line

Enable

Bit Cell
1

Bit Line

Enable

Decoder
Address

11

10

01

00

2 bits

Enable

Decoder
Address

11

10

01

00

2 bits

Enable

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Decoder
Address

11

10

01

00

2 bits

Enable

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Decoder
Address

11

10

01

00

2 bits

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Enable

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Decoder
Address

11

10

01

00

2 bits

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Enable

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Memory Array

• Each row of data is called a word. Most memories use 8-bit word, a byte.

• memory array. is the size of an address. is the smallest
addressable unit.

• An address causes the enable lines of all bit cells in a row to turn on, and their
contents are read/written simultaneously.

• On modern machines, is almost always 8.

• What is , the size of a memory address?

• 64 on 64-bit machine, 32 on 32-bit machine.

2N-word × M-bit N M

M

N

Memory Array

• = 4,294,967,296 = ~4.3 G of addressable rows.

• 4.2 gigabytes of addressable memory.

• In order to use beyond 4.2GB, memory addresses need to be bigger.

• = 18,446,744,073,709,551,616 = 18 exabytes = ~4.2 million gigabytes

232

264

Endian

• We think of an integer as one atomic value:

• int x = 0x1A2B3C4D;

• But if an integer has 4 bytes and each byte is addressable, which of the 4
bytes is stored first?

1A 2B 3C 4D

0 1 2 3

4D 3C 2B 1A

0 1 2 3

Big-endian -->

Little-endian -->

Most significant
byte first

Least significant
byte first

Endian

• Is my machine little-endian or big-endian?

• Let's find out!

Endian

• Our machine is little-endian?????

• We usually write numbers in big-endian: 345 is three hundred and forty-five

• But there are some advantages for little-endian:

• comparing two numbers of different length (long and int e.g.)

• 4E3C2B1A

• 4E3C2B1A00000000

• addition, subtraction circuits work from low to high

• etc.

Endian
Does it matter?

• Mostly we don't care. Unless you do memory trickery, variables work as
you would expect

• However, when we serialize data into byte sequences, you need to pay
extra attention:

• Writing a number to a file

• Sending a number over a network

• You and the reader must agree on byte order

• For this purpose, network byte order is defined for TCP/IP

struct
Making your own types

• Data placed in memory can be: char, short, int, long, float,
double

• What if you want to store something other than a number?

• Student?

• Course?

• House?

• ...

• You use numbers to represent them; you digitize them.

• In C, we can use structures to bundle data together.

struct
Syntax

struct student {
 char first_name[32];
 char last_name[32];
 float gpa;
};

int main(void)
{
 struct student john;

 strcpy(john.first_name, "John");
 strcpy(john.last_name, "Doe");
 john.gpa = 3.0;

 printf("%s %s: %.2f\n", john.first_name, john.last_name, john.gpa);

 return 0;
}

Don't forget the ;

Don't forget the word struct

Assignment (=) doesn't work
with arrays

struct student {
 char first_name[32];
 char last_name[32];
 float gpa;
};

int main(void)
{
 struct student john;

 strcpy(john.first_name, "John");
 strcpy(john.last_name, "Doe");
 john.gpa = 3.0;

 printf("%s %s: %.2f\n", john.first_name, john.last_name, john.gpa);

 return 0;
}

struct
Syntax

char[32]

100
struct
student x
char[32]

float

john.first_name

john.last_name

john.gpa

In
 th

is
 o

rd
er

struct student {
 char first_name[32];
 char last_name[32];
 float gpa;
};

void print_student(struct student s)
{
 printf("%s %s: %.2f\n", s.first_name, s.last_name, s.gpa);
}

int main(void)
{
 struct student john;
 ...
 print_student(john);

 return 0;
}

struct
Structures are passed by value

char[32]

100
struct
student john
char[32]

float

m
a
i
n

p
r
i
n
t
_
s
t
u
d
e
n
t

char[32]

200
struct
student s
char[32]

float

struct student {
 char first_name[32];
 char last_name[32];
 float gpa;
};

void print_student(struct student *s_p)
{
 printf("%s %s: %.2f\n", (*s_p).first_name,
 (*s_p).last_name,
 (*s_p).gpa);
}

int main(void)
{
 struct student john;
 ...
 print_student(&john);

 return 0;
}

struct
Structures are passed by value

char[32]

100
struct
student john
char[32]

float

m
a
i
n

p
r
i
n
t
_
s
t
u
d
e
n
t 200

struct
student* s_p

100

struct student {
 char first_name[32];
 char last_name[32];
 float gpa;
};

void print_student(struct student *s_p)
{
 printf("%s %s: %.2f\n", s_p->first_name,
 s_p->last_name,
 s_p->gpa);
}

int main(void)
{
 struct student john;
 ...
 print_student(&john);

 return 0;
}

struct
Structures are passed by value

char[32]

100
struct
student john
char[32]

float

m
a
i
n

p
r
i
n
t
_
s
t
u
d
e
n
t 200

struct
student* s_p

100s_p->gpa is a shorthand
for (*s_p).gpa

Btw, *s_p.gpa is read as
*(s_p.gpa), which is an
error

Choices
enum

enum major {
 ANTHROPOLOGY,
 ARCHITECTURAL_STUDIES,
 ART_HISTORY,
 ASTRONOMY_ASTROPHYSICS,
 BIG_PROBLEMS,
 BIOLOGICAL_CHEMISTRY,
 ...
};

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Major

Grade

Late Days

Year

Enrollment
unsigned short

• Nothing fancy here: C just assigns an
integer sequentially for each choice.

• Can use them as global constants

• if (major == 2) { ... }

• if (major == ART_HISTORY)
{ ... }

Choices
enum

enum major {
 ANTHROPOLOGY,
 ARCHITECTURAL_STUDIES,
 ART_HISTORY,
 ASTRONOMY_ASTROPHYSICS,
 BIG_PROBLEMS,
 BIOLOGICAL_CHEMISTRY,
 ...
};

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Major

Grade

Late Days

Year

Enrollment
unsigned short

enum major student_major = STATISTICS;

enum major student_major = 3;

clang will not
complaint about this.
But this is bad style.

Choices
switch
if (major == ANTHROPOLOGY) {
 ...
} else if (major == ARCHITECTURAL_STUDIES) {
 ...
} else if (major == ART_HISTORY) {
 ...
} else if (major == ASTRONOMY_ASTROPHYSICS) {
 ...
} else if (major == BIG_PROBLEMS) {
 ...
} ...

switch (major) {
case ANTHROPOLOGY:
 ...;
 break;
case ARCHITECTURAL_STUDIES:
 ...;
 break;
case ART_HISTORY:
 ...;
 break;
case BIOLOGICAL_CHEMISTRY:
 ...;
 break;
case BIG_PROBLEMS:
 ...;
 break;
default:
 break;
}

break signals the end
of a case. Without
break, C will execute
the next case, falling
through another case.

The default branch is
run when the major
matches none of the
above cases.

Choices
switch

• Why switch?

• Cleaner code

• More efficient than if ... else if ... chain:

• C stores the branches in a table, and switch will jump to the branch instead
of comparing one by one

• switch(x), x has to be an integer.

• break is critical! Forgetting the break is really difficult to debug.

Choices
switch

• Demo!

File I/O

• Memory is volatile. It loses data when power is removed.

• Files are stored on non-volatile storage media such as hard drives. It does not
need power to preserve data.

• Memory supports random access. One can access memory at any address
directly.

• Hard drives only support sequential access.

• C abstracts file system access via FILE *.

