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CMSC14300: Introduction to 
Systems Programming I
you’re in the right place



Your Journey in CS So Far

print(“Hello, world!”)

Variables

Functions

Recursive (!) Functions lists, strings, sets, dicts

Objects

Object-Oriented Programming

Graphs Algorithms

Modules

Applications

Chess!

What now?AI?Database?Robotics?Web DevBlockchain!$$$
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But what really is a variable? 
…   what really is a function? 
…   what does CPU do exactly? 
…   how does anything work?



Today’s Plan

1. Administrivia

2. A whirlwind tour of C

3. Terminal and coding environment



Administrivia
Staf

1. Me

2. A (mysterious) grader



Administrivia
143’s goals

1. Develop a deep understanding of how computers work

2. Transition from introductory programming to programming as a 

professional
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Application

Libraries, Modules, Algorithms
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Instruction Set Architecture

Microarchitecture
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Administrivia
Grading

Homework 60%

Quiz 15%

Final 25%



Administrivia
Homework

• Weekly assignments, starting today

• Due every Monday 11:59:59pm (generally)

• Late policy:

• 4,320 minutes of late time

• every minute past, 0.003% penalty to your final grade

• emergency, contact your advisor CC'ing me



Administrivia
Quiz and Exam

• Quiz: Monday, July 8, 6:00pm-8:00pm. (Tentative)

• Exam: Thursday, August 1, 6:00pm-8:00pm.



Administrivia
HELP!

• Resource page on course website

• Ed

• Details: don’t just say “X doesn’t work”

• No screenshots or giant code block


• Office hours:

• TBD, do the survey


• Email me



Administrivia
Advice

• Practice, practice, practice…

• Start early

• coding is fun but fighting for hours is not


• Write a little, test a little

•  you will make mistakes, make them easy to find


• Let me know your feedback; I’m still experimenting



Administrivia
Academic Dishonesty

• Do not copy code …it’s very obvious

• Do not show your solution

• … online

• … to each other

• use private Ed post if you’re unsure


• Discuss concept ok, code no

• Document your collaboration



Administrivia
Accessibility

• Contact SDS soon

• SDS takes forever to schedule a room/proctor for exams



A Whirlwind Tour of C



Why C?

• C is the lingua franca of computer programming


• unix is written in C


• many, many languages have C-like syntax


• C helps you understand how computers work


• to use C, you have to understand how computers work


• C is very fast, good for serious applications



The Anatomy of C
#include <stdio.h> 

void say_hello(void); 

int main(void) 
{ 
    say_hello(); 
    return 0; 
} 

void say_hello(void) 
{ 
    printf("Hello, world!\n"); 
}



The Anatomy of C

<— Declarations

<— Directives

<— Declarations

<— Declarations

#include <stdio.h> 

void say_hello(void); 

int main(void) 
{ 
    say_hello(); 
    return 0; 
} 

void say_hello(void) 
{ 
    printf("Hello, world!\n"); 
}



The Anatomy of C

• A C program is a list of declarations and directives.


• Declarations tell us how to interpret names.


• say_hello and main are functions.


• Directives (beginning with #) tell compiler to do stuff.


• #include <stdio.h> tells compiler to import the standard I/O library.*



The Anatomy of C

• A special declaration is called 
main


• No top-level code — all code 
is in some functions, which are 
called by main, directly or 
indirectly


• Functions can call everything 
declared above, including itself

#include <stdio.h> 

void say_hello(void); 

int main(void) 
{ 
    say_hello(); 
    return 0; 
} 

void say_hello(void) 
{ 
    printf("Hello, world!\n"); 
}



The Anatomy of C

• A function signature specifies 
its argument types and return 
types — write void if none


• A function is declared if the 
signature is followed by ;


• A function is defined if it is 
followed by a block { .. }

#include <stdio.h> 

void say_hello(void); 

int main(void) 
{ 
    say_hello(); 
    return 0; 
} 

void say_hello(void) 
{ 
    printf("Hello, world!\n"); 
}



The Anatomy of C
#include <stdio.h> 

int factorial(int x); 

int main(void) 
{ 
    int a; 
  a = 20; 

    int fact_a = factorial(a); 
    printf("factorial(%d) = %d\n", a, fact_a); 

    return 0; 
} 

int factorial(int x) 
{ 
    if (x == 0) { 
        return 1; 
    } 

    return x * factorial(x - 1); 
}

<— Argument type: int
^^^——— Return type: int



The Anatomy of C
int main(void) 
{ 
        int a; 
        a = 20; 
        int fact_a = factorial(a); 
        printf("factorial(%d) = %d\n", a, fact_a); 

        return 0; 
}

• A block { .. } consists of a list of statements. Each statement ends with ;

• A statement can declare a variable

<—- tell compiler variable a of type int exists



The Anatomy of C
int main(void) 
{ 
        int a; 
        a = 20; 
        int fact_a = factorial(a); 
        printf("factorial(%d) = %d\n", a, fact_a); 

        return 0; 
}

• A block { .. } consists of a list of statements. Each statement ends with ;

• A statement can declare a variable

• 	 assign a variable

<—- write 20 to a



The Anatomy of C
int main(void) 
{ 
        int a; 
        a = 20; 
        int fact_a = factorial(a); 
        printf("factorial(%d) = %d\n", a, fact_a); 

        return 0; 
}

• A block { .. } consists of a list of statements. Each statement ends with ;

• A statement can declare a variable

• 	 assign a variable

<—- fact_a exists, call function, write result



The Anatomy of C
int main(void) 
{ 
        int a; 
        a = 20; 
        int fact_a = factorial(a); 
        printf("factorial(%d) = %d\n", a, fact_a); 

        return 0; 
}

• A block { .. } consists of a list of statements. Each statement ends with ;

• A statement can declare a variable

• 	 assign a variable

• 	 call a function

^—- call a function to print



The Anatomy of C
int main(void) 
{ 
        int a; 
        a = 20; 
        int fact_a = factorial(a); 
        printf("factorial(%d) = %d\n", a, fact_a); 

        return 0; 
}

• A block { .. } consists of a list of statements. Each statement ends with ;

• A statement can declare a variable

• 	 assign a variable

• 	 call a function

• 	 …

<—- exit main



Control-flow Compared
If

if (x == 0) { 
        do_stuff(); 
} else if (x == 1) { 
        do_stuff() 
} else { 
        do_something_else(); 
} 

if x == 0: 
    do_stuff() 
elif x == 1: 
    do_stuff() 
else: 
    do_something_else() 

C Python



Control-flow Compared
While

while (x != 0) { 
        do_stuff(); 
} 

while x == 0: 
    do_stuff() 

C Python



Control-flow Compared
For

for (int i = 0; i < 200; i += 1) { 
        do_stuff(i); 
} 

for x in iterator: 
    do_stuff(x) 

C Python

int i = 0; 
while (i < 200) { 
        do_stuff(i); 
        i += 1; 
} 

Equivalent

x = the first element 
while x.has_more(): 
    do_stuff(x) 
    x = next(x) 

Equivalent



Control-flow Compared
Return, Continue, Break

while (x != 0) { 
        return x; 
        continue; 
        break; 
} 

while x != 0: 
    return x 
    continue 
    break 



Boolean Compared

• C doesn’t have Boolean (!)


• any non-zero value is considered true, and zero is false


• e.g. if (42) { .. } —> if (true) { .. }

C Python

x && y x and y

x || y x or y

!x not x



How to Run C
Review: how does Python work?

$ python3 hello.py 
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Review: how does Python work?

python3

$ python3 hello.py 



How to Run C
Review: how does Python work?

python3

$ python3 hello.py 

  open hello.py



How to Run C
Review: how does Python work?

python3

$ python3 hello.py 

  open hello.py

hello.py



How to Run C
Review: how does Python work?

python3

$ python3 hello.py hello.py
  x = “hello” 



How to Run C
Review: how does Python work?

python3

$ python3 hello.py 

  ok. remembered x

hello.py
  x = “hello” 



How to Run C
Review: how does Python work?

python3

$ python3 hello.py 

  next line?

hello.py
  x = “hello” 



How to Run C
Review: how does Python work?

python3

$ python3 hello.py hello.py
  print(x) 



How to Run C
Review: how does Python work?

python3

$ python3 hello.py 

  ok. looking up x

hello.py
  print(x) 



How to Run C
Review: how does Python work?

python3

$ python3 hello.py 

  printing

hello.py
  print(x) 



How to Run C
Review: how does Python work?

python3

$ python3 hello.py 
hello

  printing

hello.py
  print(x) 
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Review: how does Python work?

python3

$ python3 hello.py 
hello

  next line?

hello.py
  print(x) 



How to Run C
Review: how does Python work?

python3

$ python3 hello.py 
hello

  next line?

hello.py
  EOF 



How to Run C
Review: how does Python work?

python3

$ python3 hello.py 
hello

  Ok. Done.

hello.py
  EOF 



How to Run C
Review: how does Python work?

$ python3 hello.py 
hello 
$ 



How to Run C
Review: how does Python work?

• There is a program that reads your Python script, and executes line by line


• This program is called Python interpreter



How to Run C
How about C?



How to Run C
How about C?

$ clang -o hello hello.c 
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$ clang -o hello hello.c 

clang
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How about C?

$ clang -o hello hello.c 

clang

  open hello.c



How to Run C
How about C?

$ clang -o hello hello.c 

clang

hello.c

  open hello.c



How to Run C
How about C?

$ clang -o hello hello.c 

clang

hello.c

 read the entire file



How to Run C
How about C?

$ clang -o hello hello.c 

clang

hello.c

 read the entire file

#include <stdio.h> 
int main(void) 
{ 
  printf(“hello”); 
  return 0; 
}



How to Run C
How about C?

$ clang -o hello hello.c 

clang

hello.c

 Ok, translating…

#include <stdio.h> 
int main(void) 
{ 
  printf(“hello”); 
  return 0; 
}



How to Run C
How about C?

$ clang -o hello hello.c 

clang

hello.c

 Ok, translating…

#include <stdio.h> 
int main(void) 
{ 
  printf(“hello”); 
  return 0; 
}



How to Run C
How about C?

$ clang -o hello hello.c 

clang

hello.c

#include <stdio.h> 
int main(void) 
{ 
  printf(“hello”); 
  return 0; 
}

hello

 Ok, translating…



How to Run C
How about C?

$ clang -o hello hello.c 

clang

hello.c

 Done

#include <stdio.h> 
int main(void) 
{ 
  printf(“hello”); 
  return 0; 
}

hello



How to Run C
How about C?

$ clang -o hello hello.c 
$  

hello



How to Run C
How about C?

$ clang -o hello hello.c 
$ ./hello 

hello
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hello

 printing
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$ ./hello 
hello

hello
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How to Run C
How about C?

$ clang -o hello hello.c 
$ ./hello 
hello 
$ ./hello 
hello

hello

 printing



How to Run C
How about C?

$ clang -o hello hello.c 
$ ./hello 
hello 
$ ./hello 
hello

hello

 done



How to Run C
How about C?

$ clang -o hello hello.c 
$ ./hello 
hello 
$ ./hello 
hello 
$

hello



How to Run C
How about C?

• clang translates your source code (text) into a file containing machine 
instructions


• to “compile the source code into an executable”


• you have a new executable; running that executable doesn’t involve clang 
anymore


• clang is a compiler



To-do

• Fill out the survey (if you haven’t already)


• Read the homepage of the course website


• Get familiar with the Resources page (also open to suggestions)


• HW0 is out, due next Monday


