
Byron Zhong

CMSC14300: Introduction to
Systems Programming I
you’re in the right place

Your Journey in CS So Far

print(“Hello, world!”)

Variables

Functions

Recursive (!) Functions lists, strings, sets, dicts

Objects

Object-Oriented Programming

Graphs Algorithms

Modules

Applications

Chess!

What now?AI?Database?Robotics?Web DevBlockchain!$$$

011000001011100101010110011101111000011011
101011001110111100001101110011110000011111
000011011100111100000111110000000110000010
111000001111100000010000010111001010101100
001111100000001100000101110010101011001110
011100000111110000001100000101110010101011

But what really is a variable?
… what really is a function?
… what does CPU do exactly?
… how does anything work?

Today’s Plan

1. Administrivia

2. A whirlwind tour of C

3. Terminal and coding environment

Administrivia
Staf

1. Me

2. A (mysterious) grader

Administrivia
143’s goals

1. Develop a deep understanding of how computers work

2. Transition from introductory programming to programming as a

professional

011000001011100101010110011101111000011011
101011001110111100001101110011110000011111
000011011100111100000111110000000110000010
111000001111100000010000010111001010101100
001111100000001100000101110010101011001110
011100000111110000001100000101110010101011

Application

Libraries, Modules, Algorithms

Operating System

Instruction Set Architecture

Microarchitecture

Register Transfer Level

Gates

Electricity

011000001011100101010110011101111000011011
101011001110111100001101110011110000011111
000011011100111100000111110000000110000010
111000001111100000010000010111001010101100
001111100000001100000101110010101011001110
011100000111110000001100000101110010101011

Application

Libraries, Modules, Algorithms

Operating System

Instruction Set Architecture

Microarchitecture

Register Transfer Level

Gates

Electricity

143

011000001011100101010110011101111000011011
101011001110111100001101110011110000011111
000011011100111100000111110000000110000010
111000001111100000010000010111001010101100
001111100000001100000101110010101011001110
011100000111110000001100000101110010101011

Application

Libraries, Modules, Algorithms

Operating System

Instruction Set Architecture

Microarchitecture

Register Transfer Level

Gates

Electricity

143
144

011000001011100101010110011101111000011011
101011001110111100001101110011110000011111
000011011100111100000111110000000110000010
111000001111100000010000010111001010101100
001111100000001100000101110010101011001110
011100000111110000001100000101110010101011

Application

Libraries, Modules, Algorithms

Operating System

Instruction Set Architecture

Microarchitecture

Register Transfer Level

Gates

Electricity

143
144

EE

Administrivia
Grading

Homework 60%

Quiz 15%

Final 25%

Administrivia
Homework

• Weekly assignments, starting today

• Due every Monday 11:59:59pm (generally)

• Late policy:

• 4,320 minutes of late time

• every minute past, 0.003% penalty to your final grade

• emergency, contact your advisor CC'ing me

Administrivia
Quiz and Exam

• Quiz: Monday, July 8, 6:00pm-8:00pm. (Tentative)

• Exam: Thursday, August 1, 6:00pm-8:00pm.

Administrivia
HELP!

• Resource page on course website

• Ed

• Details: don’t just say “X doesn’t work”

• No screenshots or giant code block

• Office hours:

• TBD, do the survey

• Email me

Administrivia
Advice

• Practice, practice, practice…

• Start early

• coding is fun but fighting for hours is not

• Write a little, test a little

• you will make mistakes, make them easy to find

• Let me know your feedback; I’m still experimenting

Administrivia
Academic Dishonesty

• Do not copy code …it’s very obvious

• Do not show your solution

• … online

• … to each other

• use private Ed post if you’re unsure

• Discuss concept ok, code no

• Document your collaboration

Administrivia
Accessibility

• Contact SDS soon

• SDS takes forever to schedule a room/proctor for exams

A Whirlwind Tour of C

Why C?

• C is the lingua franca of computer programming

• unix is written in C

• many, many languages have C-like syntax

• C helps you understand how computers work

• to use C, you have to understand how computers work

• C is very fast, good for serious applications

The Anatomy of C
#include <stdio.h>

void say_hello(void);

int main(void)
{
 say_hello();
 return 0;
}

void say_hello(void)
{
 printf("Hello, world!\n");
}

The Anatomy of C

<— Declarations

<— Directives

<— Declarations

<— Declarations

#include <stdio.h>

void say_hello(void);

int main(void)
{
 say_hello();
 return 0;
}

void say_hello(void)
{
 printf("Hello, world!\n");
}

The Anatomy of C

• A C program is a list of declarations and directives.

• Declarations tell us how to interpret names.

• say_hello and main are functions.

• Directives (beginning with #) tell compiler to do stuff.

• #include <stdio.h> tells compiler to import the standard I/O library.*

The Anatomy of C

• A special declaration is called
main

• No top-level code — all code
is in some functions, which are
called by main, directly or
indirectly

• Functions can call everything
declared above, including itself

#include <stdio.h>

void say_hello(void);

int main(void)
{
 say_hello();
 return 0;
}

void say_hello(void)
{
 printf("Hello, world!\n");
}

The Anatomy of C

• A function signature specifies
its argument types and return
types — write void if none

• A function is declared if the
signature is followed by ;

• A function is defined if it is
followed by a block { .. }

#include <stdio.h>

void say_hello(void);

int main(void)
{
 say_hello();
 return 0;
}

void say_hello(void)
{
 printf("Hello, world!\n");
}

The Anatomy of C
#include <stdio.h>

int factorial(int x);

int main(void)
{
 int a;
 a = 20;

 int fact_a = factorial(a);
 printf("factorial(%d) = %d\n", a, fact_a);

 return 0;
}

int factorial(int x)
{
 if (x == 0) {
 return 1;
 }

 return x * factorial(x - 1);
}

<— Argument type: int
^^^——— Return type: int

The Anatomy of C
int main(void)
{
 int a;
 a = 20;
 int fact_a = factorial(a);
 printf("factorial(%d) = %d\n", a, fact_a);

 return 0;
}

• A block { .. } consists of a list of statements. Each statement ends with ;

• A statement can declare a variable

<—- tell compiler variable a of type int exists

The Anatomy of C
int main(void)
{
 int a;
 a = 20;
 int fact_a = factorial(a);
 printf("factorial(%d) = %d\n", a, fact_a);

 return 0;
}

• A block { .. } consists of a list of statements. Each statement ends with ;

• A statement can declare a variable

• 	 assign a variable

<—- write 20 to a

The Anatomy of C
int main(void)
{
 int a;
 a = 20;
 int fact_a = factorial(a);
 printf("factorial(%d) = %d\n", a, fact_a);

 return 0;
}

• A block { .. } consists of a list of statements. Each statement ends with ;

• A statement can declare a variable

• 	 assign a variable

<—- fact_a exists, call function, write result

The Anatomy of C
int main(void)
{
 int a;
 a = 20;
 int fact_a = factorial(a);
 printf("factorial(%d) = %d\n", a, fact_a);

 return 0;
}

• A block { .. } consists of a list of statements. Each statement ends with ;

• A statement can declare a variable

• 	 assign a variable

• 	 call a function

^—- call a function to print

The Anatomy of C
int main(void)
{
 int a;
 a = 20;
 int fact_a = factorial(a);
 printf("factorial(%d) = %d\n", a, fact_a);

 return 0;
}

• A block { .. } consists of a list of statements. Each statement ends with ;

• A statement can declare a variable

• 	 assign a variable

• 	 call a function

• 	 …

<—- exit main

Control-flow Compared
If

if (x == 0) {
 do_stuff();
} else if (x == 1) {
 do_stuff()
} else {
 do_something_else();
}

if x == 0:
 do_stuff()
elif x == 1:
 do_stuff()
else:
 do_something_else()

C Python

Control-flow Compared
While

while (x != 0) {
 do_stuff();
}

while x == 0:
 do_stuff()

C Python

Control-flow Compared
For

for (int i = 0; i < 200; i += 1) {
 do_stuff(i);
}

for x in iterator:
 do_stuff(x)

C Python

int i = 0;
while (i < 200) {
 do_stuff(i);
 i += 1;
}

Equivalent

x = the first element
while x.has_more():
 do_stuff(x)
 x = next(x)

Equivalent

Control-flow Compared
Return, Continue, Break

while (x != 0) {
 return x;
 continue;
 break;
}

while x != 0:
 return x
 continue
 break

Boolean Compared

• C doesn’t have Boolean (!)

• any non-zero value is considered true, and zero is false

• e.g. if (42) { .. } —> if (true) { .. }

C Python

x && y x and y

x || y x or y

!x not x

How to Run C
Review: how does Python work?

$ python3 hello.py

How to Run C
Review: how does Python work?

python3

$ python3 hello.py

How to Run C
Review: how does Python work?

python3

$ python3 hello.py

 open hello.py

How to Run C
Review: how does Python work?

python3

$ python3 hello.py

 open hello.py

hello.py

How to Run C
Review: how does Python work?

python3

$ python3 hello.py hello.py
 x = “hello”

How to Run C
Review: how does Python work?

python3

$ python3 hello.py

 ok. remembered x

hello.py
 x = “hello”

How to Run C
Review: how does Python work?

python3

$ python3 hello.py

 next line?

hello.py
 x = “hello”

How to Run C
Review: how does Python work?

python3

$ python3 hello.py hello.py
 print(x)

How to Run C
Review: how does Python work?

python3

$ python3 hello.py

 ok. looking up x

hello.py
 print(x)

How to Run C
Review: how does Python work?

python3

$ python3 hello.py

 printing

hello.py
 print(x)

How to Run C
Review: how does Python work?

python3

$ python3 hello.py
hello

 printing

hello.py
 print(x)

How to Run C
Review: how does Python work?

python3

$ python3 hello.py
hello

 next line?

hello.py
 print(x)

How to Run C
Review: how does Python work?

python3

$ python3 hello.py
hello

 next line?

hello.py
 print(x)

How to Run C
Review: how does Python work?

python3

$ python3 hello.py
hello

 next line?

hello.py
 EOF

How to Run C
Review: how does Python work?

python3

$ python3 hello.py
hello

 Ok. Done.

hello.py
 EOF

How to Run C
Review: how does Python work?

$ python3 hello.py
hello
$

How to Run C
Review: how does Python work?

• There is a program that reads your Python script, and executes line by line

• This program is called Python interpreter

How to Run C
How about C?

How to Run C
How about C?

$ clang -o hello hello.c

How to Run C
How about C?

$ clang -o hello hello.c

clang

How to Run C
How about C?

$ clang -o hello hello.c

clang

 open hello.c

How to Run C
How about C?

$ clang -o hello hello.c

clang

hello.c

 open hello.c

How to Run C
How about C?

$ clang -o hello hello.c

clang

hello.c

 read the entire file

How to Run C
How about C?

$ clang -o hello hello.c

clang

hello.c

 read the entire file

#include <stdio.h>
int main(void)
{
 printf(“hello”);
 return 0;
}

How to Run C
How about C?

$ clang -o hello hello.c

clang

hello.c

 Ok, translating…

#include <stdio.h>
int main(void)
{
 printf(“hello”);
 return 0;
}

How to Run C
How about C?

$ clang -o hello hello.c

clang

hello.c

 Ok, translating…

#include <stdio.h>
int main(void)
{
 printf(“hello”);
 return 0;
}

How to Run C
How about C?

$ clang -o hello hello.c

clang

hello.c

#include <stdio.h>
int main(void)
{
 printf(“hello”);
 return 0;
}

hello

 Ok, translating…

How to Run C
How about C?

$ clang -o hello hello.c

clang

hello.c

 Done

#include <stdio.h>
int main(void)
{
 printf(“hello”);
 return 0;
}

hello

How to Run C
How about C?

$ clang -o hello hello.c
$

hello

How to Run C
How about C?

$ clang -o hello hello.c
$./hello

hello

How to Run C
How about C?

$ clang -o hello hello.c
$./hello

hello

 printing

How to Run C
How about C?

$ clang -o hello hello.c
$./hello
hello

hello

 printing

How to Run C
How about C?

$ clang -o hello hello.c
$./hello
hello

hello

 done

How to Run C
How about C?

$ clang -o hello hello.c
$./hello
hello
$

hello

How to Run C
How about C?

$ clang -o hello hello.c
$./hello
hello
$./hello

hello

How to Run C
How about C?

$ clang -o hello hello.c
$./hello
hello
$./hello

hello

 printing

How to Run C
How about C?

$ clang -o hello hello.c
$./hello
hello
$./hello
hello

hello

 printing

How to Run C
How about C?

$ clang -o hello hello.c
$./hello
hello
$./hello
hello

hello

 done

How to Run C
How about C?

$ clang -o hello hello.c
$./hello
hello
$./hello
hello
$

hello

How to Run C
How about C?

• clang translates your source code (text) into a file containing machine
instructions

• to “compile the source code into an executable”

• you have a new executable; running that executable doesn’t involve clang
anymore

• clang is a compiler

To-do

• Fill out the survey (if you haven’t already)

• Read the homepage of the course website

• Get familiar with the Resources page (also open to suggestions)

• HW0 is out, due next Monday

