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Broad Classes of ML Algorithms

• Supervised learning  our focus today
– Requires labeled data
– Classification (discrete sets or classes), Regression 

(numbers)
• Unsupervised learning

– Clustering, dimension reduction
– Probability distribution estimation
– Finding association (in features) 

• Semi-supervised learning
• Reinforcement learning



Supervised Learning Workflow
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Threat Model for Attacks on ML

• Knowledge of model/system
– White box: attacker knows internal structure
– Black box: attacker doesn’t know internal structure
– Can the attacker access the training data?
– Can the attacker access the source code (for training or 

deployment of the model)?
– How many queries can the attacker make?

• Ability to influence the model/system
– Can the attacker influence the initial training data/model?
– Is data from the attacker used in model updates?
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Evasion Attacks

10

• Attacker tries to cause a misclassification
– Identify the key set of features to modify for evasion

• Attack strategy depends on knowledge on classifier
– Learning algorithm, feature space, training data



Evasion of Image Recognition



Evasion: Perturbed Inputs



Small Amounts of Noise Added



Practical White Box Evasion Attacks

• Start with optimization function to calculate minimal 
perturbation for misclassification

• Then iteratively improve  
for realistic constraints
– Location constraints
– Image smoothing
– Printable colors
– Robust perturbations



Revisiting the Attack Model

• White box assumes full access to model
– Impractical in many real world scenarios

• Black box attacks
– Repeatedly query target 

model until achieves 
misclassification
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Evasion Attacks in the Physical World

Sharif, Bhagavatula, Bauer, Reiter, Accessorize to a Crime: Real and Stealthy 
Attacks on State-Of-The-Art Face Recognition, CCS 2016
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Evasion Attacks in the Physical World

Eykholt et al., Robust Physical-World Attacks on Deep Learning Models, CVPR 
2018
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Poisoning Attack
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Classifier

Training Data

Training

(e.g. SVM)

Poison Attack

DetectionModel Training



Poisoning Attack

• Tamper with training data to manipulate model
• Goals:

– Cause some behavior (e.g., a malicious 
behavior) to be mis-classified

– Make the model useless

23
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Model Inversion Attack

• Extract private and sensitive inputs by leveraging 
outputs and ML model

https://bair.berkeley.edu/blog/2020/12/20/lmmem/



Model Extraction Attack

• Extract model parameters by querying model
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Transfer Learning

• High-quality models trained using large labeled 
datasets
– Vision: ImageNet contains 14+ million labeled images

Where do small companies get such large datasets?



Default Solution: Transfer Learning

Company X Limited 

Training Data Highly-trained Model

+

High-quality Model
Student A Student B Student C

Recommended by Google, Microsoft, and Facebook

Teacher

Student
Transfer and re-use 
pre-trained model



Backdoors

• Hidden behavior trained into a DNN

• Can be inserted at initial training or added later

Backdoored

DNN

“Stop”

“Yield”

“Do not enter”

Clean Inputs
Normal behavior 
on clean inputs

Adversarial Inputs

Backdoored

DNN

“Rest Area”

“Rest Area”

“Rest Area”

Trigger

Attacker-specified behavior on 
any input with trigger

“Rest Area”
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Deepfakes



Deepfakes



Recap: Security Threats to ML

https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning



Recap: Security Threats to ML

https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
Also see: https://github.com/mitre/advmlthreatmatrix/blob/master/pages/adversarial-ml-threat-
matrix.md#adversarial-ml-threat-matrix



Diffie-Hellman Key 
Exchange and

End-to-End Encryption



1. Pick number 

2.

x
X ← 2x mod p

NIST: Prime p = 987234234…

X

Y

Compute: 
 

 
Z ← Yx mod p
K = Hash(Z)

1. Pick number 

2.

y
Y ← 2y mod p

Compute:


Z ← Xy mod p

K = Hash(Z)K

Both compute the same key: 
Yx = (2y)x = 2xy = (2x)y = Xy mod p

Diffie-Hellman Key Exchange (e.g. in TLS)
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Knows , learns  and . Compute ? p X Y K



Discrete Logarithm Attack: 
1. Find number  such that 
2. Compute , 

3. Decrypt messages using 

x 2x = X mod p
Z ← Yx mod p K ← H(Z)

K

Input: 
Output: 

p, X, Y
Z

Step 1 believed intractable! But it might not be!
And, solvable on big 
quantum computer!

One Attack: Discrete Logarithm Computation
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Y′￼Facebook

K K′￼

Traditional Diffie-Hellman Deployment
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K

End-to-End Diffie-Hellman
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X1

Ratcheted Diffie-Hellman in Secure Messaging









Y1 ← 2y1

Z1 ← Xy1
1 mod p

K1 = Hash(Z1)
C1 = Encrypt(K1, M1)

X2, C2









X2 ← 2x2

Z2 ← Xy1
2 mod p

K2 = Hash(Z2)
C2 = Encrypt(K1, M2)

X1 ← 2x1

Y1, C1

Y3, C3








Y1 ← 2y1

Z2 ← Xy2
2 mod p

K1 = Hash(Z1)
C1 = Encrypt(K1, M1)

Messages encrypted with , then , then , …x1, y1 x2, y1 x2, y2



X1

Y1, C1

Self-Healing with Ratcheting

X2, C2

Y3, C3

Messages encrypted with , then , then , …x1, y1 x2, y1 x2, y2

Captures : 
Can decrypt  

 and 

y1

C1 C2

but can’t  
decrypt C3, C4, …



Authentication in Secure Messaging

FacebookX

Y

K

X

Y

X′￼

Y′￼Facebook

K K′￼

vs.



Encryption and Usable 
Key Exchanges



Why Glenn Couldn’t Encrypt

Snowden image public domain from Laura Poitras. Document image CC by GNOME icon authors
Greenwald image CC by David dos Dantos - mynewsdesk, https://commons.wikimedia.org/w/index.php?curid=36965640
NSA logo CC by the Electronic Frontier Foundation



Why Glenn Couldn’t Encrypt

• http://vimeo.com/56881481
– 1:50 – 3:37, 4:10 – 4:58, 11:15 – 11:43

• “And yet, Greenwald still didn't bother learning security 
protocols. ‘The more he sent me, the more difficult it 
seemed,’ he says. ‘I mean, now I had to watch a f***ing 
video . . . ?’”

• Snowden ended up reaching out to Laura Poitras instead

http://www.rollingstone.com/politics/news/snowden-and-greenwald-the-men-who-leaked-the-
secrets-20131204 
http://www.dailydot.com/politics/edward-snowden-gpg-for-journalists-video-nsa-glenn-greenwald/


http://vimeo.com/56881481
http://www.rollingstone.com/politics/news/snowden-and-greenwald-the-men-who-leaked-the-secrets-20131204
http://www.rollingstone.com/politics/news/snowden-and-greenwald-the-men-who-leaked-the-secrets-20131204
http://www.dailydot.com/politics/edward-snowden-gpg-for-journalists-video-nsa-glenn-greenwald/






Why Johnny Can’t Encrypt

• Classic paper in usable security (1999)
• Usability evaluation of PGP 5.0

Alma Whitten and J.D. Tygar, “Why Johnny Can't Encrypt: A Usability Evaluation of PGP 5.0” In Proceedings of USENIX Security 
1999.



Why Johnny Can’t Encrypt

• Some usable security principles:
– Unmotivated user
– Abstraction property
– Lack of feedback
– Barn door property
– Weakest link property



Why Johnny Can’t Encrypt

• Interfaces are bad
• Metaphors are wrong (and confusing)
• Opaque process
• Key management is difficult



Complexity of Asymmetric Encryption

• User creates a keypair
– Public key should be widely distributed
– Private key should never be distributed

• Private key protected with a password
• Two very different functions:

– Encrypting (secrecy)
– Signing (authenticity)

• Need person’s key to communicate



(Just Some) Usability Problems

• Encryption is rarely configured by default
• Public/private key encryption

– How to get someone’s public key?
– How do I make it work on my phone?

• You often need a good password
– …and you can’t lose it or forget it

• Configuring multiple devices
• “Only paranoid people use encryption”



Do You Have the Right Key?

• Person-in-the-middle attack
• Ways of trusting a personkey binding:

– Public-key infrastructure (certifying authorities)
– Web of trust (someone you trust vouches)
– Exchange keys out of band
– Platform provider verifies
– Key servers, such as https://pgp.mit.edu/

https://pgp.mit.edu/


Key Verification on Whatsapp



Verifying You Have the Right Key



Verifying You Have the Right Key
GnuPG

3A70 F9A0 4ECD B5D7 8A89

D32C EDA0 A352 66E2 C53D


OpenSSH

ef:6d:bb:4c:25:3a:6d:f8:79:d3:a7:90:db:c9:b4:25


bubblebabble

xucef-masiv-zihyl-bicyr-zalot-cevyt-lusob-

negul-biros-zuhal-cixex


OTR

4206EA15 1E029807 C8BA9366 B972A136 C6033804


WhatsApp

54040 65258 71972 73974

10879 55897 71430 75600

25372 60226 27738 71523

Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith Cranor, Jeremy Thomas, Blase Ur. Can Unicorns Help Users Compare 
Crypto Key Fingerprints? In Proceedings of CHI 2017.



Verifying You Have the Right Key

Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith Cranor, Jeremy Thomas, Blase Ur. Can Unicorns Help Users Compare 
Crypto Key Fingerprints? In Proceedings of CHI 2017.



Anonymous Routing



Anonymity on the Internet

src:99.159.12.179 dest:74.6.231.20 Data:87ac349…

src:99.159.12.179 dest:74.6.231.20 Data:87ac349…

Everyone knows Blase is visiting his favorite website, even if using TLS



Who can see what: If TLS is not used

(Source: https://support.torproject.org/)

https://support.torproject.org/


Who can see what: With TLS

(Source: https://support.torproject.org/)

https://support.torproject.org/


One Tool: Virtual Private Networks (VPNs)

src:99.159.12.179 Dest:128.135.12.10 Data:h2384…

src:- dest:74.6.231.20 Data:87ac349…

Data is an encrypted packet meant for Yahoo!

Src:128.10.200.11 dest:74.6.231.20 Data:87ac349…

Yahoo! sees UChicago as  
source, not Blase.

Router sees UChicago as  
dest, not Yahoo!.



Uses of VPNs

1. Avoid snooping by ISPs


2. Circumventing location-based restrictions


3. Corporate access control (e.g. Chicago’s cVPN)



Trust in VPNs

VPN service knows what Blase is doing - it must be trusted.



Tor: The Onion Router

- Technology called onion routing developed in 90s by Office of 
Naval Research


- Published as research paper by Dingledine, Matthewson, 
Syverson in 2004


- Today, about 2 million users connected at any given time



Tor Infrastructure
9 Directory Servers

~6000 Relay Servers

Client running 

custom software

(Services do not run  
any special software.)



Step One: Pick a Circuit
9 Directory Servers

~6000 Relay Servers

Client running 

custom software

(Services do not run  
any special software.)

Select a “circuit” of three relay 
servers with help of directory.


- 1st is “guard relay”


- 2nd is “middle relay”


- 3rd is “exit relay”

Guard

Middle

Exit



Step Two: Setup Circuit
9 Directory Servers

~6000 Relay Servers

Client running 

custom software

(Services do not run  
any special software.)

Guard

Middle

Exit

Agree on keys with each relay


- Run key exchange with 
guard directly to get 


- Tunnel through guard to 
middle node and run key 
exchange to get 


- Tunnel through first two 
nodes to agree on key  
with exit node

K1

K2

K3

K1, K2, K3

K1

K2

K3



Step Three: Communicate with Onion Encryption
9 Directory Servers

~6000 Relay Servers

Client running 

custom software

(Services do not run  
any special software.)

Guard

Middle

Exit

1. To send  to Yahoo!:


a. Encrypt with 


b. Encrypt again with 


c. Encrypt yet again with 


2. Send ciphertext to guard


3. Guard decrypts a layer, forwards


4. Middle decrypts a layer, forwards


5. Exit decrypts last layer, sends to Yahoo!

M

K1

K2

K3

K1, K2, K3

K1

K2

K3





Who can see what: With Tor

(Source: https://support.torproject.org/)

https://support.torproject.org/


Attacks on Tor/Onion Routing

1. Controlling both guard and exit defeats all protection


2. If not enough users, then there is no “blending in”


3. Destination may implement usual tracking measures - use a 
special browser!


4. Often just detecting that you’re using Tor is enough to compromise 
you.


Many other attacks on availability, protocol bugs, etc





The End


