
18. Web Security and

Attacks (Part 2)

Blase Ur and David Cash

February 17th, 2023

CMSC 23200 / 33250

CSRF

Cross-Site Request Forgery (CSRF)

• Goal: Make a user perform some action on

a website without their knowledge

– Trick the browser into having them do this

• Main idea: Cause a user who’s logged into

that website to send a request that has

lasting effects

Cross-Site Request Forgery (CSRF)

• Prerequisites:

– Victim is logged into important.com in a

particular browser

– important.com accepts GET and/or POST

requests for important actions

– Victim encounters attacker’s code in that same

browser

CSRF Example

• Victim logs into important.com and they stay

logged in (within some browser)

– Likely an auth token is stored in a cookie

• Attacker causes victim to load
https://www.important.com/transfer.php?amount=1000

00000&recipient=blase

– This is a GET request. For POST requests, auto-

submit a form using JavaScript

• Transfer money, cast a vote, change a

password, change some setting, etc.

CSRF: How?!

• On blaseur.com have Cat

photos

• Send an HTML-formatted email with

• Have a hidden form on blaseur.com with

JavaScript that submits it when page loads

• Etc.

CSRF: Why Does This Work?

• Recall: Cookies for important.com are

automatically sent as HTTP headers with

every HTTP request to important.com

• Victim doesn’t need to visit the site explicitly,

but their browser just needs to send an

HTTP request

• Basically, the browser is confused

– “Confused deputy” attack

CSRF: Key Mitigations

• Check HTTP referrer (less good)

– Can sometimes be forged

• CSRF token (standard practice)

– “Randomized” value known to important.com

and inserted as a hidden field into forms

– Key: not sent as a cookie, but sent as part of

the request (HTTP header, form field, etc.)

XSS

Cross-Site Scripting (XSS)

• Goal: Run JavaScript on someone else’s

domain to access that domain’s DOM

– If the JavaScript is inserted into a page on

victim.com or is an external script loaded by a

page on victim.com, it follows victim.com’s

same origin policy

• Main idea: Inject code through either URL

parameters or user-created parts of a page

Cross-Site Scripting (XSS)

• Variants:

– Reflected XSS: The JavaScript is there only

temporarily (e.g., search query that shows up

on the page or text that is echoed)

– Stored XSS: The JavaScript stays there for all

other users (e.g., comment section)

• Prerequisites:

– HTML isn’t (completely) stripped

– victim.com echoes text on the page

– victim.com allows comments, profiles, etc.

XSS: How?

• Type <script>EVIL CODE();</script> into
form field that is repeated on the page

• Do the same, but as a URL parameter

• Add a comment (or profile page, etc.) that
contains the malicious script

• Malicious script accesses sensitive parts of
the DOM (financial info, cookies, etc.)

– Change some values

– Exfiltrate info (load attacker.com/?q=SECRET)

XSS: Why Does This Work?

• All scripts on victim.com (or loaded from an

external source by victim.com) are run with

victim.com as the origin

– By the Same Origin Policy, can access DOM

XSS: Key Mitigations

• Sanitize / escape user input

– Harder than you think!

– Different encodings

–

– Use libraries to do this!

• Define Content Security Policies (CSP)

– Specify where content (scripts, images, media
files, etc.) can be loaded from

– Content-Security-Policy: default-
src 'self' *.trusted.com

XSS: Subtleties

• See

https://cheatsheetseries.owasp.org/cheatshe

ets/XSS_Filter_Evasion_Cheat_Sheet.html for

lots of examples of trying to evade filters

https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html

SQL Injection

Very Basic MySQL

• Goal: Manage a database on the server

• Create a database:

– CREATE DATABASE cs232;

• Delete a database:

– DROP DATABASE cs232;

• Use a database (subsequent commands

apply to this database):

– USE cs232;

Very Basic MySQL

• Create a table:

– CREATE TABLE potluck (id INT NOT
NULL PRIMARY KEY AUTO_INCREMENT,

name VARCHAR(20), food

VARCHAR(30), confirmed CHAR(1),

signup_date DATE);

• See your tables:

– SHOW TABLES;

• See detail about your table:

– DESCRIBE cs232;

Very Basic MySQL

• Insert data into a table:

– INSERT INTO potluck (id, name,
food, confirmed, signup_date)

VALUES (NULL, 'David Cash', 'Vegan

Pizza', 'Y', '2022-02-18’);

• Edit rows of your table:

– UPDATE potluck SET food = 'None'
WHERE name = 'David Cash';

• Get your data:

– SELECT * FROM potluck;

SQL Injection

• Goal: Change or exfiltrate info from

victim.com’s database

• Main idea: Inject code through the parts of a

query that you define

SQL Injection

SQL Injection

• Prerequisites:

– Victim site uses a database

– Some user-provided input is used as part of a

database query

– DB-specific characters aren’t (completely)

stripped

SQL Injection: How?

• Enter DB logic as part of query you impact

• Back-end query

– SELECT * FROM USERS WHERE USER=''

AND PASS='';

• For password of user blase , attacker gives:

– ' OR '1'='1

• Straightforward insertion:

– SELECT * FROM USERS WHERE USER='blase'

AND PASS='' OR '1'='1';

SQL Injection: Why Does This Work?

• Database does what you ask in queries!

SQL Injection: Key Mitigations

• Sanitize / escape user input

– Harder than you think!

– Different encodings

– Use libraries to do this!

• Prepared statements from libraries handle
escaping for you!

• Use PHP’s mysqli (in place of mysql) with
prepared statements

– https://www.w3schools.com/php/php_mysql_pre
pared_statements.asp

https://www.w3schools.com/php/php_mysql_prepared_statements.asp

Additional Web Topics

Processing Data on the Server

• JavaScript is client-side

• Server-side you find Perl (CGI), PHP, Python

(Django)

• Process data on the server

• What happens if this code crashes?

Storing Data on the Server

• Run a database on the server

• MySQL, SQLite, MongoDB, Redis, etc.

• You probably don’t want to allow access

from anything other than localhost

• You definitely don’t want human-memorable

passwords for these

CMS (Content Management System)

• WordPress (PHP + MySQL), Drupal

CMS Defaults / Vulnerabilities

• WordPress attempted logins:

Online Tracking

Online Tracking

• Advertisers want to show you

advertisements targeted to your interests

and demographics

Online Tracking

• First party = the site you are visiting (whose

address is in the URL bar)

• Third party = other sites contacted as a

result of your visit to that site

• First-party tracking (e.g., for search)

– Consider DuckDuckGo and alternatives

Data-Driven Inferences

You might like dogs!

Mechanics of Tracking

• Most commonly, tracking is accomplished

via HTTP cookies

– Third-party cookies (+ referrer HTTP header)

Mechanics of Online Tracking

• JavaScript / images from advertising

networks loaded as part of your page

– In iframes

– Or sometimes not

– Why does this matter?

• Let’s discuss: what can an advertising

network learn, and how?

Mechanics of Cookie Syncing

From Papadopoulos et al. “Cookie Synchronization: Everything You Always Wanted
to Know But Were Afraid to Ask,” in Proc. WWW, 2019.

Browser fingerprinting

• Use features of the browser that are

relatively unique to your machine

– Fonts

– GPU model anti-aliasing (Canvas fingerprinting)

– User-agent string

– (Often not) IP address (Why not?)

Device Fingerprinting

• Use unique(-ish) combination of device

features as an identifier

• https://panopticlick.eff.org/

https://panopticlick.eff.org/

Alternatives to Cookies

for Tracking / Profiling

Google’s FLoC

• Federated Learning of Cohorts

• Clusters users based on their browsing

activity and assigns a cohort ID

– Uses SimHash for clustering

– Clusters intended to contain 1,000s of users

• Criticisms include fingerprintability, ability to

tie cohort to PII, and collapse of different

browsing contexts

• (Abandoned in early 2022)

Google’s FLoC

Google’s Topics API

Google’s Topics API

