
David Cash & Blase Ur

Cryptography Part 2

CMSC 23200/33250, Winter 2023, Lecture 10

University of Chicago

Outline

- Message Authentication

- Hash Functions

- Public-Key Encryption

- Digital Signatures

Outline

- Message Authentication
- Hash Functions

- Public-Key Encryption

- Digital Signatures

Adversary Goal #2: Break Authenticity

C1, …, CqK
m1, …, mq m/ ⊥

K

The adversary sees ciphertexts and attempts to create and
inject a new ciphertext without being detected by receiver.

Other attack settings are important here too.

C′￼

Stream ciphers do not give integrity

C = b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e446a782871c2d

M = please pay ben 20 bucks

C’= b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e546a782871c2d

M’ = please pay ben 21 bucks

Inherent to stream-cipher approach to encryption.

Message Authentication Codes

A message authentication code (MAC) is an algorithm that
takes as input a key and a message, and outputs an
“unpredictable” tag.

MACK()D

K

T

T←MACK(D)

D,T

K
K

T=MACK(D)?

D will usually be a ciphertext, but is often called a “message”.

MAC Security Goal: Unforgeability

T←MACK(D) D,T D’,T’

“ACCEPT”  
or “ERROR”

MAC satisfies unforgeability if it is infeasible for Adversary to
fool Bob into accepting D’ not previously sent by Alice.

T’=MACK(D’)?

MAC Security Goal: Unforgeability

T = 827851dc9cf0f92ddcdc552572ffd8bc

D = please pay ben 20 bucks

D’= please pay ben 21 bucks

D,T D’,T’

Note: No encryption on this slide.

T’= baeaf48a891de588ce588f8535ef58b6

Should be hard to predict T’ for any new D’.

MACs In Practice: Use HMAC or Poly1305-AES

- More precisely: Use HMAC-SHA2. More on hashes and
MACs in a moment.

- Other, less-good option: AES-CBC-MAC (bug-prone)

Authenticated Encryption

Encryption that provides confidentiality and integrity is
called Authenticated Encryption.

- Built using a good stream cipher and a MAC.

- Ex: Salsa20 with HMAC-SHA2

- Best solution: Use ready-made Authenticated Encryption

- Ex: AES-GCM is the standard

Outline

- Message Authentication

- Hash Functions
- Public-Key Encryption

- Digital Signatures

Next Up: Hash Functions

Definition: A hash function is a deterministic function H that reduces arbitrary
strings to fixed-length outputs.

HM H(M)

Some security goals:

- collision resistance: can’t find M != M’ such that H(M) = H(M’)

- preimage resistance: given H(M), can’t find M

- second-preimage resistance: given H(M), can’t find M’ s.t.

 H(M’) = H(M)

Note: Very different from hashes used in data structures!

Why are collisions bad?

The binary

should hash to

3477a3498234f

Hashes to

3477a3498234f,

so let’s install!
MD5()=3477a3498234f

MD5()=3477a3498234f

Practical Hash Functions

Name Year Output Len (bits) Broken?

MD5 1993 128 Super-duper broken

SHA-1 1994 160 Yes

SHA-2 (SHA-256) 1999 256 No

SHA-2 (SHA-512) 2009 512 No

SHA-3 2019 >=224 No

Confusion over “SHA” names leads to vulnerabilities.

Hash Functions are not MACs

Both map long inputs to short outputs… but a hash function does not take a key.

HM H(M) MACK()D

K

T

Intuition: a MAC is like a hash function, that only the holders of key can evaluate.

MACs from Hash Functions

Goal: Build a secure MAC out of a good hash function.

- Totally insecure if H = MD5, SHA1, SHA-256, SHA-512

- May be secure with SHA-3 (but don’t do it)

Construction: MAC(K, D) = H(K || D) Warning: Broken

Upshot: Use HMAC; It’s designed to avoid this and other issues. 

Later: Hash functions and certificates

Construction: MAC(K, D) = H(D || K) Just don’t

Length Extension Attack

Construction: MAC(K, D) = H(K || D) Warning: Broken

D,T D’,T’

Adversary goal: Find new message D’ and a valid tag T’ for D’

Need to find: Given T=H(K || D), find T’=H(K || D’) without knowing K.

In Assignment 4: Break this construction!

Outline

- Message Authentication

- Hash Functions

- Public-Key Encryption
- Digital Signatures

The Seed of Public-Key Cryptography

Basic question: If two people are talking in the presence of an eavesdropper,
and they don’t have pre-shared a key, is there any way they can send private
messages?

The Seed of Public-Key Cryptography

Basic question: If two people are talking in the presence of an eavesdropper,
and they don’t have pre-shared a key, is there any way they can send private
messages?

Rivest, Shamir, Adleman

in 1978: Yes, differently!
Turing Award, 2002, 
+ no money

Diffie and Hellman

in 1976: Yes!

Turing Award, 2015, 
+ Million Dollars

Cocks, Ellis, Williamson

in 1969, at GCHQ: 
Yes…

The Seed of Public-Key Cryptography

Basic question: If two people are talking in the presence of an eavesdropper,
and they don’t have pre-shared a key, is there any way they can send private
messages?

<some bits>

M?

Message M Receive M

Formally impossible (in some sense): 
No difference between receiver and adversary.

The Seed of Public-Key Cryptography

Basic question: If two people are talking in the presence of an eavesdropper,
and they don’t have pre-shared a key, is there any way they can send private
messages?

R←rand()

<some bits>

Doesn’t know R,R’,
Can’t “try them all” (too many)

<some bits>

<some bits>

R’←rand()
Receive M

Message M

M?

A public-key encryption scheme consists of three algorithms
KeyGen, Encrypt, and Decrypt

Public-Key Encryption Schemes

KeyGen

PK,SK

Encrypt

C

PK

M

Decrypt

M

SK

C

KeyGen: Outputs two keys.

PK published openly, and 
SK kept secret.

Encrypt: Uses PK and M
to produce a ciphertext C.

Decrypt: Uses SK and C
to recover M.

Public-Key Encryption in Action

PK=public key 
known to everyone

SK=secret key 
known by Receiver only

PK

PK

SK

M C = Enc(PK,M) M

C

Establishing a Shared Key

PK,SK

Pick K
C = Enc(PK,K)

PK

K = Dec(SK,C)

- This and similar ideas used in SSH, TLS, etc
davidcash@hofbraeuhaus:~|⇒ ssh cs232-33.c.cs.uchicago.edu
The authenticity of host 'cs232-33.c.cs.uchicago.edu (128.135.37.172)' can't be established.
ED25519 key fingerprint is SHA256:hw3ERhLhD97AFxQTfHdyONeKJchxySqfxZQ66JqLBSI.
This host key is known by the following other names/addresses:
 ~/.ssh/known_hosts:56: cs232main.c.cs.uchicago.edu
 ~/.ssh/known_hosts:58: a2bailey.c.cs.uchicago.edu
 ~/.ssh/known_hosts:59: 128.135.37.128
 ~/.ssh/known_hosts:60: cs232-02.c.cs.uchicago.edu
 ~/.ssh/known_hosts:61: cs232-10.c.cs.uchicago.edu
 ~/.ssh/known_hosts:62: cs232-53.c.cs.uchicago.edu
 ~/.ssh/known_hosts:63: cs232-52.c.cs.uchicago.edu
 ~/.ssh/known_hosts:64: cs232-01.c.cs.uchicago.edu
 (19 additional names omitted)
Are you sure you want to continue connecting (yes/no/[fingerprint])?

A Glimpse at Public-Key Encryption: RSA

RSA Key Generation
- Pick and be large random prime numbers (around)

- Compute
- Set to a default value (and are common)

- Compute such that
- Output

- Public key
- Secret key

p q 21024

N ← pq
e e = 3 e = 65537

d ed = 1 mod (p − 1)(q − 1)

pk = (N, e)
sk = (N, d)

Example:

-

-

p = 5, q = 11, N = 55
e = 3, d = 27

Plain RSA Encryption

PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Enc((N, e), x) = xe mod N

Dec((N, d), y) = yd mod N

Using number theory from CMSC 27100, can show:

Warning: BrokenNever use directly as encryption!

Dec(Enc((N, e), x)) = (xe)d = x mod N

Bit-length of N Year

400 1993

478 1994

515 1999

768 2009

795 2019

Factoring Records and RSA Key Length
- Factoring N allows recovery of secret key

- Challenges posted publicly by RSA Laboratories

- Recommended bit-length today: 2048 or greater

- Note that fast algorithms force such a large key.

- 512-bit N defeats naive factoring

Outline

- Message Authentication

- Hash Functions

- Public-Key Encryption

- Digital Signatures

A digital signature scheme consists of three algorithms KeyGen,
Sign, and Verify

Digital Signatures Schemes

KeyGen

PK,SK

Sign

σ

SK

M

Verify

M

PK

M,σ

KeyGen: Outputs two keys.

PK published openly, and 
SK kept secret.

Sign: Uses SK to produce
a “signature” σ on M.

Verify: Uses PK to check
if signature σ is valid for M.

Digital Signature Security Goal: Unforgeability

σ←Sign(SK,M)

σ,M σ’,M’

ACCEPT/  
REJECT

Scheme satisfies unforgeability if it is unfeasible for
Adversary (who knows PK) to fool Bob into accepting M’ not
previously sent by Alice.

Verify(PK,σ’,M’)?M

PK

PK

SK

PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = Md mod N
Verify((N, e), M, σ) : σe = M mod N?

“Plain” RSA with No Encoding Broken

e = 3 is common for fast verification.

PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = encode(M)d mod N
Verify((N, e), M, σ) : σe = encode(M) mod N?

RSA Signatures with Encoding

encode maps bit strings to numbers between 0 and N

Encoding must be chosen  
with extreme care.

 Broken

Forging RSA Signatures with Encoding

To forge a signature on , and adversary must find a integer

between and such that:

When , this is just

M σ
0 N

σe = encode(M) mod N
e = 3

σ3 = encode(M) mod N

Easy: Find a real number such that

In fact, we can find such that

.

It’s just , which is easy to compute
even if the numbers involved are large.

σ
σ3 = encode(M) mod N

σ
σ3 = encode(M)

σ = 3 encode(M)

Hard: Find an integer such that
σ
σ3 = encode(M) mod N

Signatures for Authentication

PK,SK

Hey it’s me, your user Server

- This and similar ideas used in SSH, TLS, etc

- Contrast with passwords?

David’s PK

David

σ = Sign(SK,r)

Pick random 
bytes rReally? Prove it by signing r

Verify(PK,r,σ)?

Example RSA Signature Encoding: Full Domain Hash

N: n-byte long integer.

H: Hash fcn with m-byte output.

k = ceil((n-1)/m)

Ex: SHA-256, m=32

Sign((N,d),M):

1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Output σ = Xd mod N

Verify((N,e),M,σ):
1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Check if σe = X mod N

Other RSA Padding Schemes: PSS (In TLS 1.3)

- Somewhat complicated

- Randomized signing

RSA Signature Summary

- Plain RSA signatures are very broken

- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented

correctly

- Full-Domain Hash and PSS should be preferred

- Don’t roll your own RSA signatures!

Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange

- EC version has shorter keys

- Secure, but even more ripe for implementation errors

The End

