Cryptography Part 1 CMSC 23200/33250, Winter 2023, Lecture 9

David Cash & Blase Ur

University of Chicago

https://www.amazon.com

amazo

Your connection to this site is private.

Details

Permissions

Connection

Chrome verified that Symantec Class 3
Secure Server CA - G4 issued this
website's certificate. The server did not
supply any Certificate Transparency
information.

Certificate Information

Your connection to www.amazon.com is encrypted using a modern cipher suite.

The connection uses TLS 1.2.

The connection is encrypted and authenticated using AES_128_GCM and uses ECDHE_RSA as the key exchange mechanism.

What do these mean?

ON UPDATED DAILY

EXPLORE

zon.com

Today's Deals

Gift Cards

fire \$499

Can you please come over nothing asap to help me move the I need to be out of here by couch? I guess you forgot your 3pm phone at home or Delivered something Send

What is Cryptography?

Cryptography involves algorithms with security goals.

Cryptography involves using math to stop adversaries.

Common Security Goal: Secure Channel

Client

Server

Confidentiality: Adversary does not learn anything about messages m_1, m_2

Authenticity: $m_1' = m_1$ and $m_2' = m_2$

Crypto in CS23200/33250

- A brief overview of major concepts and tools
- Cover (some of) big "gotchas" in crypto deployments
- Cover background for networking and authentication later

Not going to cover math, proofs, or many details. Consider taking CS284 (Cryptography)!

Four settings for cryptography

Rest of this lecture

- Symmetric Encryption Basics
- Stream Ciphers
- Message Authentication Codes

Rest of this lecture

- Symmetric Encryption Basics
- Stream Ciphers
- Message Authentication Codes

Ciphers (a.k.a. Symmetric Encryption)

A cipher is a pair of algorithms Encrypt, Decrypt:

Require that decryption recovers the same message.

Historical Cipher: ROT13 ("Caesar cipher")

Encrypt(K,m): shift each letter of plaintext forward by K positions in alphabet (wrap from Z to A).

Plaintext: **DEFGH**

Key (shift): 3

Ciphertext: FGHKL

Plaintext: **ATTACKATDAWN**

Key (shift): 13

Ciphertext: NGGNPXNGQNJA

Historical Cipher: Substitution Cipher

Encrypt(K,m): Parse key K as a permutation π on $\{A, ..., Z\}$. Apply π to each character of m.

P: ATTACKATDAWN

K: π—

C: ZKKZAMZKYZGT

How many keys?

 $26! \approx 2^{88}$

9 million years to try all keys at rate of

1 trillion/sec

X	π(x)
A	Z
В	U
С	A
D	Y
E	R
F	E
G	X
H	В
I	D
J	С
K	M
L	Q
M	H
N	Т
0	I
P	S
Q	V
R	N
S	P
T	K
U	0
V	F
W	G
X	W
Y	L
Z	J

Cryptanalysis of Substitution Cipher

Quick recall: Bitwise-XOR operation

We will use bit-wise XOR: $\frac{\oplus 1100}{1001}$

0101

Some Properties:

- $\bullet \ \ X \oplus Y = \ \ Y \oplus X$
- $\bullet \ \ X \oplus X = 000...0$
- $\bullet \ \ X \oplus Y \oplus X = Y$

Cipher Example: One-Time Pad

Key K: Bitstring of length L

Plaintext M: Bitstring of length L

Encrypt(K,M): Output K⊕M

Decrypt(K,C): Output K⊕C

Example:

$$\begin{array}{r} 0101 \\ \oplus 1100 \\ \hline 1001 \end{array}$$

Correctly decrypts because

$$K \oplus C = K \oplus (K \oplus M) = (K \oplus K) \oplus M = M$$

Q: Is the one-time pad secure?

Bigger Q: What does "secure" even mean?

Evaluating Security of Crypto Algorithms

Kerckhoff's Principle: Assume adversary knows your algorithms and implementation. The only thing it doesn't know is the key.

- Example: Adversary knows you are running SSH, and it knows all of the ciphers that SSH allows by looking at the public standard (or downloading the open-source software itself)
- ... but it does not know the keys involved

Adversary Goal #1: Break Confidentiality

$$m_1, \dots, m_q \xrightarrow{K} \xrightarrow{C_1, \dots, C_q} \xrightarrow{K} \xrightarrow{M} \perp$$

The adversary sees ciphertexts and attempts to recover some "useful information" about plaintexts.

Other attack settings are important (e.g. adversary can ask for some encryptions, some decryptions...)

Adversary Goal #2: Break Authenticity

$$m_1, \dots, m_q \longrightarrow \bigcap_{\hat{C}} C_1, \dots, C_q \longrightarrow \bigcap_{\hat{C}} K$$

The adversary sees ciphertexts and attempts to create and inject a new ciphertext without being detected by receiver.

Other attack settings are important here too.

Recovering Partial Information; Partial Knowledge

- Recovering entire messages is useful
- But recovering partial information is also be useful

A lot of information is missing here.

But can we say who this is?

- Attacker may know large parts of plaintext already (e.g. formatting strings or application content). The attacker tries to obtain something it doesn't already know.

M = http://site.com?password=

Confidentiality Goal for Encryption

An **attack** is successful as long as it recovers <u>some</u> info about plaintext that is useful to adversary.

Encryption should hide <u>all possible partial information</u> about plaintexts, since what is useful is situation-dependent.

Attacks can succeed without recovering the key

$$m_1, \dots, m_q \xrightarrow{K} \xrightarrow{C_1, \dots, C_q} \xrightarrow{K} \xrightarrow{M} \perp$$

Full break: Adversary recovers K, decrypts all ciphertexts.

However: Clever attacker may compromise encryption without recovering the key.

Security of One-Time Pad

<u>Claim</u>: If adversary sees **only one** ciphertext under a random key, then any plaintext is equally likely, so it cannot recover any partial information <u>besides plaintext</u> <u>length</u>.

Ciphertext observed: 10111

Possible plaintext: 00101

⇒ Possible key: 10010

- 1. Adversary goal: Learn partial information from plaintext
- 2. Adversary capability: Observe a single ciphertext
- 3. Adversary compute resources: Unlimited time/memory (!)

Issues with One-Time Pad

- 1. Reusing a pad is insecure
- 2. One-Time Pad does not provide integrity/authenticity
- 3. One-Time Pad has a long key

Issue #1: Reusing a One-Time Pad is Insecure

Issue #1: Reusing a One-Time Pad is Insecure

Has led to real attacks:

- Project Venona (1940s) attack by US on Soviet encryption
- MS Windows NT protocol PPTP
- WEP (old WiFi encryption protocol)
- Fortiguard routers! [link]

Issue #2: One-Time Pad Does Not Provide Integrity

Issue #3: One-Time Pad Needs a Long Key

Can prove: Any cipher as secure as the OTP must have: Key-length ≥ Plaintext-length

In practice:

- Use *stream cipher*: Encrypt(K,m) = G(K)⊕m
- Add authentication tag
- Use *nonces* to encrypt multiple messages

Outline

- Symmetric Encryption Basics
- Stream Ciphers
- Block Ciphers

Tool to address key-length of OTP: Stream Ciphers

Stream cipher syntax: Algorithm G that takes one input and produces a very long bit-string as output.

Use G(seed) in place of pad.
Still malleable and still one-time, but key is shorter.

Stream Cipher Security Goal (Sketch)

Security goal: When k is random and unknown, G(k) should "look" random.

... even to an adversary spending a lot of computation.

Much stronger requirement that "passes statistical tests".

Brute force attack: Given y=G(k), try all possible k and see if you get the string y.

Clarified goal: When k is random and unknown, G(k) should "look" random to anyone with less computational power needed for a brute force attack.

(keylength = 256 is considered strong now)

Aside: Fundamental Physical Property of the Universe*

There exist (1-to-1) functions (say on bitstrings) that are:

- 1) Very fast to evaluate
- 2) Computationally infeasible to reverse

The disparity can be almost arbitrarily large!

Evaluating y = f(x) may only take a few cycles....

... and finding x from y within the lifetime of the universe may not be possible, even with a computer made up of every particle in the universe.

^{*}conjectured, but unproven property

Computational Strength

# Steps	Who can do that many?
2 56	Strong computer with GPUs
280	All computers on Bitcoin network in 4.5 hours
2128	Very large quantum computer? (Ask Diana, Fred, Bill, Robert)*
2192	Nobody?
2256	Nobody?

^{*}Not directly comparable but this is an estimate of equivalent power. Quantum computers are most effective against public-key crypto, but they also speed up attacks on symmeric-key crypto. (More next time.)

Practical Stream Ciphers (Not covered in this class)

RC4 (1987): "Ron's Cipher #4". Mostly retired by 2016.

ChaCha20 (2007): Successfully deployed replacement.

Supports nonces.

Pad reuse can still happen with stream ciphers

Addressing pad reuse: Stream cipher with a nonce

Stream cipher with a nonce: Algorithm G that takes **two inputs** and produces a very long bit-string as output.

- "nonce" = "number once".
- Usually denoted IV = "initialization vector"

Security goal: When k is random and unknown, G(IV,k) should "look" random and independent for each value of IV.

Solution 1: Stream cipher with a nonce

- If nonce repeats, then pad repeats

Example of Pad Re-use: WEP

IEEE 802.11b WEP: WiFi security standard '97-'03

IV is 24-bit wide counter

- Repeats after 2²⁴ frames (≈16 million)
- IV is often set to zero on power cycle

Solutions: (WPA2 replacement)

- Larger IV space, or force rekeying more often
- Set IV to combination of packet number, address, etc

Example of Pad Re-use: WEP

IEEE 802.11b WEP: WiFi security standard '97-'03

Solutions: (W

parameters to their initial values. KRACK forces the nonce reuse in a way that allows the encryption to be bypassed. Ars Technica IT editor Sean Gallagner has much more about

- Larger IV sp
- Set IV to combination of packet number, address, etc

Issues with One-Time Pad

- 1. Reusing a pad is insecure \times \text{Use unique nonces}
- 2. One-Time Pad is does not provide integrity/authenticity
- 3. One-Time Pad has a long key \int Use stream cipher with short key

Adversary Goal #2: Break Authenticity

$$m_1, \dots, m_q \longrightarrow K$$

$$\longrightarrow K \longrightarrow K \longrightarrow M/ \perp$$

The adversary sees ciphertexts and attempts to create and inject a new ciphertext without being detected by receiver.

Other attack settings are important here too.

Stream ciphers do not give integrity

```
M = please pay ben 20 bucks
C = b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e446a782871c2d
C'= b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e546a782871c2d
M' = please pay ben 21 bucks
```

Inherent to stream-cipher approach to encryption.

Message Authentication Code

A message authentication code (MAC) is an algorithm that takes as input a key and a message, and outputs an "unpredictable" tag.

D will usually be a ciphertext, but is often called a "message".

MAC Security Goal: Unforgeability

MAC satisfies **unforgeability** if it is infeasible for Adversary to fool Bob into accepting **D'** not previously sent by Alice.

MAC Security Goal: Unforgeability

Note: No encryption on this slide.

D = please pay ben 20 bucks

T = 827851dc9cf0f92ddcdc552572ffd8bc

D'= please pay ben 21 bucks

T'= baeaf48a891de588ce588f8535ef58b6

Should be hard to predict T' for any new D'.

MACs In Practice: Use HMAC or Poly1305-AES

- More precisely: Use HMAC-SHA2. More on hashes and MACs in a moment.

- Other, less-good option: AES-CBC-MAC (bug-prone)

Authenticated Encryption

Encryption that provides confidentiality and integrity is called Authenticated Encryption.

- Built using a good stream cipher and a MAC.
 - Ex: Salsa20 with HMAC-SHA2
- Best solution: Use ready-made Authenticated Encryption
 - Ex: AES-GCM is the standard

The End