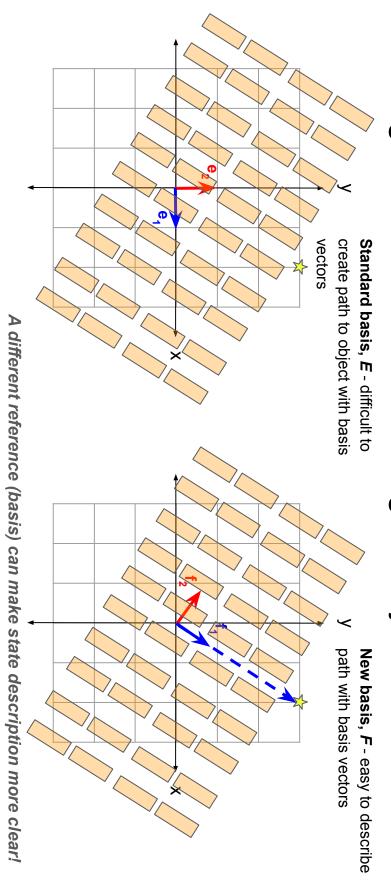
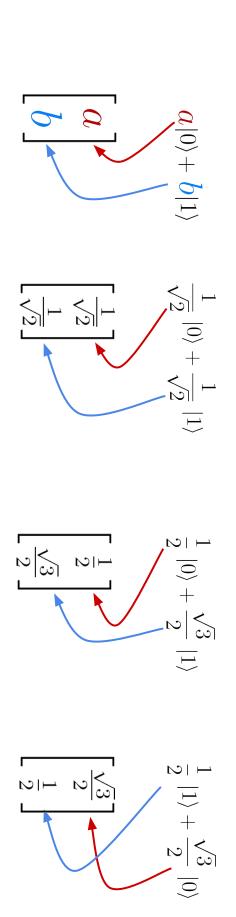
Change of Basis

Choosing a Reference for Locating an Object

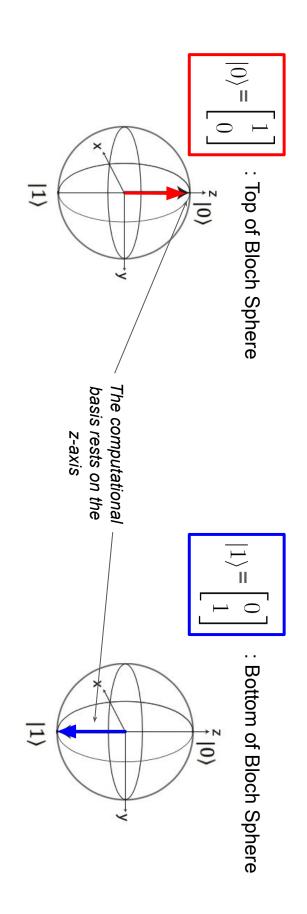


Review: Quantum State has a Vector Notation



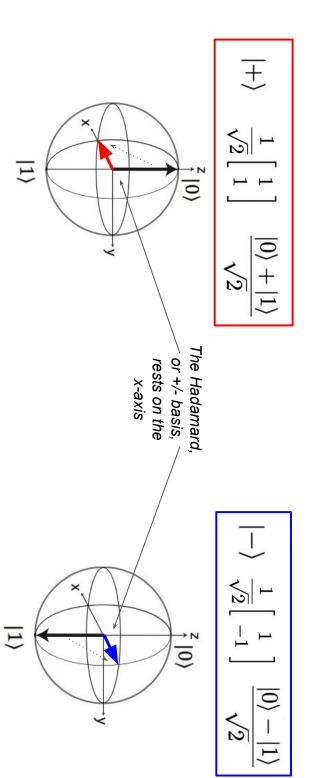
The Computational Basis

of measuring 0 or 1. Typically, qubits are expressed using the computational basis corresponding to probability



The Hadamard Basis

The Hadamard basis can also be used in QIS.



Another way to think about it....

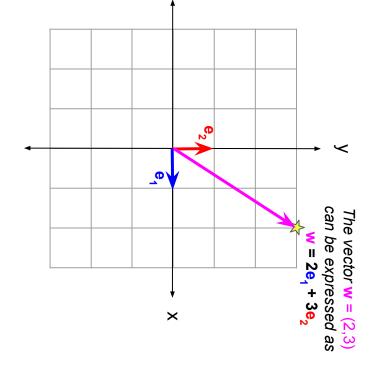
Conventional operations rotate the vector within the sphere

Basis changes rotate the sphere and vector together

Basis of a Vector Space

- A *basis*, $X = \{x_1, x_2, ..., x_n\}$, is a set of vectors that can be used to express any point in a vector space, V, as a linear combination
- Different bases can be chosen for V, and choice of basis can make a problem easier to solve
- The standard basis, E, is used to describe vectors in the x-y plane:

$$E = \{ \mathbf{e_1} = (1,0), \mathbf{e_2} = (0,1) \}$$



Change of Basis, Computational and Hadamard

- Linear transform with a matrix, M, allows base conversion
- $M_{\rm H,C}$ to convert from the computational basis to the Hadamard basis $M_{\rm C,H}$ to convert from the Hadamard basis to the computational basis

$$M_{H,C} = (M_{C,H})^{-1}$$

 $M_{H,C} = H = H^{-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

Mapping Coordinates: Computational to Hadamard Basis

$$|0\rangle \Rightarrow |+\rangle$$

$$\frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1 \\ 1 & -1\end{bmatrix} \times \begin{bmatrix}1 \\ 0\end{bmatrix} = \frac{1}{\sqrt{2}}\begin{bmatrix}1 \\ 1\end{bmatrix}$$

$$\frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1 \\ 1 & -1\end{bmatrix} \times \begin{bmatrix}0 \\ 1\end{bmatrix} = \frac{1}{\sqrt{2}}\begin{bmatrix}1 \\ 1\end{bmatrix}$$

$$\frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1 \\ 1 & -1\end{bmatrix} \times \begin{bmatrix}0 \\ 1\end{bmatrix} = \frac{1}{\sqrt{2}}\begin{bmatrix}1 \\ 1\end{bmatrix}$$

and $|-\rangle$ do not. and |1> lie on opposite sides of the Bloch Sphere, but |+> PRACTICE: True or False - Computational basis states |0>

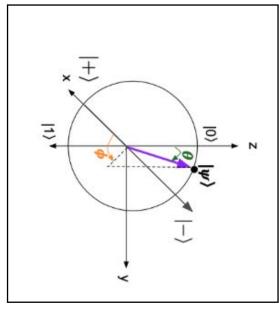


- a. True
- b. False
- Sometimes true
- I don't know

and |-> do not. and |1> lie on opposite sides of the Bloch Sphere, but |+> PRACTICE: True or False - Computational basis states |0>

B. FALSE. |+> and |-> are also on opposite sides, just on the x-axis!

Using vectors located on opposite sides of the Bloch sphere is actually important if you are trying to define a basis for your quantum information!



Example 1: Basis Change of a Qubit at State |0>

A qubit has a state of $|v\rangle=|0\rangle$ Express the qubit as $|v\rangle=v_{+}|+\rangle+v_{-}|-\rangle$.

Known:
$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \qquad |-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

Solution: $|v\rangle = \frac{1}{\sqrt{2}}|+\rangle + \frac{1}{\sqrt{2}}|-\rangle$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} - \frac{1}{2} \end{bmatrix}$$

Example 1: Basis Change of a Qubit, Generalized

A qubit has a state
$$|v
angle=v_0|{\rm 0}
angle+v_1|{\overline {
m 1}}
angle$$
xpress the qubit as

 $|v\rangle = v_+|+\rangle + v_-|-\rangle$

Known:
$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$
 $|-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$

Solution:

$$|v\rangle = \frac{v_0 + v_1}{\sqrt{2}}|+\rangle + \frac{v_0 - v_1}{\sqrt{2}}|-\rangle$$

Rules for Qubit Basis Sets Digging Deeper

A set of basis vectors, $X = \{x_1, x_2\}$, must be *orthonormal*:

All included vectors are orthogonal (perpendicular)

$$\langle \mathbf{x}_1 | \mathbf{x}_2 \rangle = 0$$

Each vector has a norm (distance) of 1

$$\langle x_1 | x_1 \rangle = |x_1| = 1$$

Transpose: $\begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \alpha_0 & \alpha_1 \end{bmatrix}$

Complex Conjugate:

$$c = a + bi$$

$$c = a + bi$$
$$\bar{c} = a - bi$$

Bra-Ket Notation: |Ket>to Bra| conversion

$$\langle \mathbf{z}|=|\mathbf{z}\rangle^{\dagger}=|\bar{\mathbf{z}}\rangle^{T}$$

Euclidean Distance/Norm:

$$\begin{aligned} |\mathbf{z}| &= \sqrt{|z_1|^2 + |z_2|^2 + \dots + |z_n|^2} \\ &= \sqrt{z_1 \overline{z_1} + z_2 \overline{z_2} + \dots + z_n \overline{z_n}} \end{aligned}$$

Advanced Mathematics For QIS

Qubit state and quantum gates are represented by vectors/matrices

Elements can be complex!

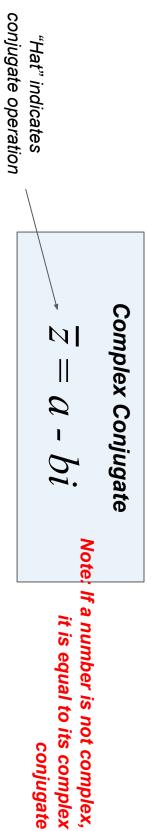
Special linear algebra operations are needed to analyze quantum states and state transformations with complex values. Some important operations include:

- Complex conjugate Helps calculate state probabilities with complex values
- row vectors ((Bras)) Conjugate transpose - Allows qubit state column vectors (|Kets>) to be transformed to
- Inner Product Applied to confirm that basis states (|0>/|1>, |+>/|->, |i>/|-i>) can be used to describe the state of a qubit

Complex Conjugate

of a complex number The complex conjugate operation changes the value of the imaginary component

$$If z = a + bi,$$
then



'Flips' the sign of imaginary values!

z = a + 0*i = z = a - 0*i

Example: Complex Conjugate

$$z = 8 + 3i$$

$$\overline{z} = 8 - 3i$$

$$v = (1 + i)/\sqrt{2}$$

c = 12 - 7i

$$\overline{C} = 12 + 7 i$$

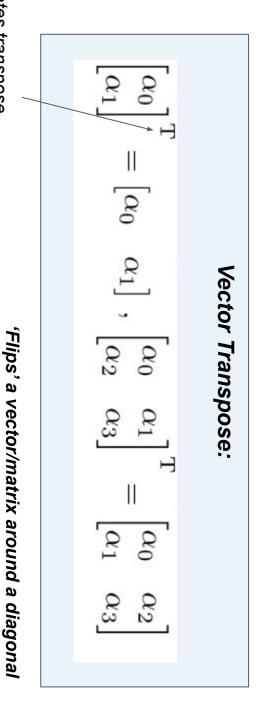
$$If z = a + bi$$
, then

Complex Conjugate

$$\overline{z} = a - bi$$

Key Linear Algebra Operation: Transpose

row and column values Transpose operations are used on quantum states and operations to adjust the



"T" indicates transpose

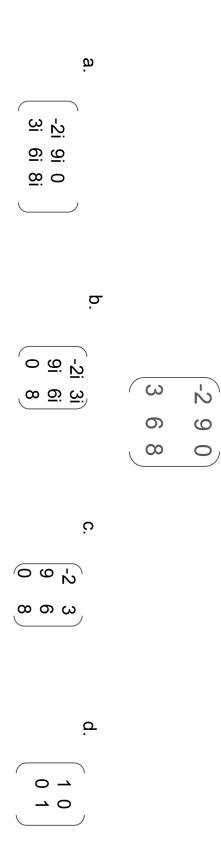
Example: Transpose

 $\begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \alpha_0 & \alpha_1 \end{bmatrix}, \begin{bmatrix} \alpha_0 & \alpha_1 \\ \alpha_2 & \alpha_3 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \alpha_0 & \alpha_2 \\ \alpha_1 & \alpha_3 \end{bmatrix}$

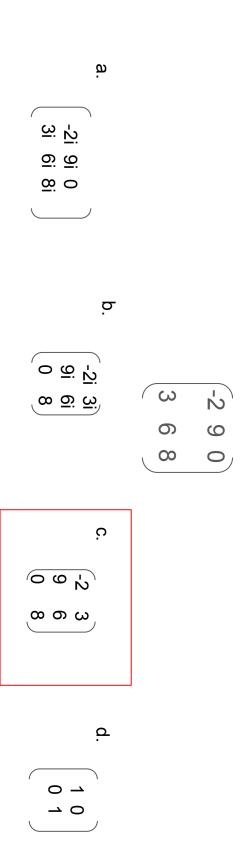
Vector Transpose:

$$M = \begin{bmatrix} -2 & 5 \\ 1 & 9 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad v = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
$$M^{T} = \begin{bmatrix} -2 & 1 \\ 5 & 9 \end{bmatrix} \qquad U^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad v^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

PRACTICE: What is the transpose of the following matrix?

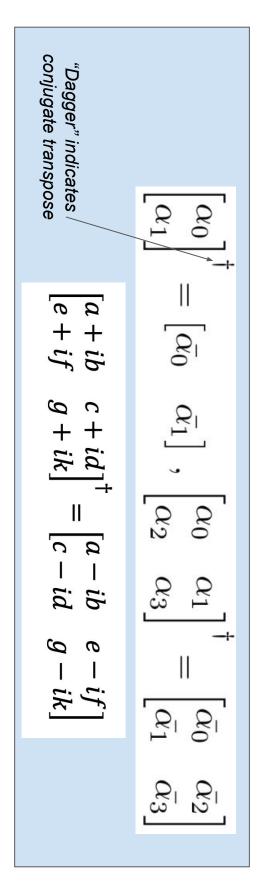


PRACTICE: What is the transpose of the following matrix?



Conjugate Transpose of a Vector/Matrix

Invert the sign of all imaginary values (complex conjugate), and mirror vector or matrix elements (*transpose*) across the diagonal!



Example: Conjugate Transpose

Conjugate Transpose

Conjugate Transpose
$$\begin{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}^\dagger = \begin{bmatrix} \bar{\alpha_0} & \bar{\alpha_1} \end{bmatrix}, \begin{bmatrix} \alpha_0 & \alpha_1 \\ \alpha_2 & \alpha_3 \end{bmatrix}^\dagger = \begin{bmatrix} \bar{\alpha_0} & \bar{\alpha_2} \\ \bar{\alpha_1} & \bar{\alpha_2} \end{bmatrix}$$

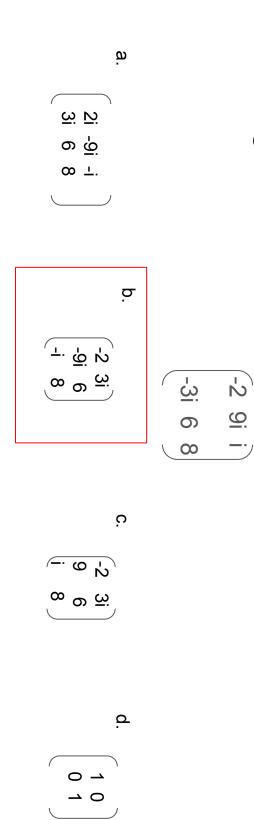
$$v = \begin{bmatrix} 1 - i \\ 0 \\ 3 + 4i \end{bmatrix}$$

$$v = \begin{bmatrix} 3i & 1 + i \\ 1 & -5i \end{bmatrix}$$

$$M^\dagger = \begin{bmatrix} -3i & 1 \\ 1 - i & 5i \end{bmatrix}$$

following matrix? PRACTICE: What is the conjugate transpose of the

following matrix? PRACTICE: What is the conjugate transpose of the



|Ket>to<Bra| conversion

- Both transformations use the same steps
- Conjugate transpose: complex conjugate then vector transpose

Quantum analysis requires |Kets>to be transformed to(Bras| (and vice versa!)

$$\langle \mathbf{z}| = |\mathbf{z}\rangle^{\dagger} = |\bar{\mathbf{z}}\rangle^{T}$$

$$\begin{bmatrix} \alpha_{0} \\ \alpha_{1} \end{bmatrix}^{\dagger} = \begin{bmatrix} \bar{\alpha_{0}} & \bar{\alpha_{1}} \end{bmatrix}$$

Example: |Ket>to\Bra|

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}$$
$$|0\rangle^{\frac{1}{1}} = \langle 0| = \begin{bmatrix} 1\\0 \end{bmatrix}$$

$$|\psi\rangle = \begin{bmatrix} 0 \\ -i \end{bmatrix}$$

$$|\psi\rangle^{\dagger} = \langle\psi| = \begin{bmatrix}0 & i\end{bmatrix}$$

$$|\phi\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ i \end{bmatrix}$$
$$|\phi\rangle^{\dagger} = \langle \phi | = \frac{1}{\sqrt{2}} [1 \quad -i]$$

Note: \Bra\ to |Ket\conversion follows the same procedure!

$$\langle \psi |^{\dagger} = | \psi \rangle$$

PRACTICE: Convert |10>to<10|

$$\langle \mathbf{z}| = |\mathbf{z}\rangle^{\dagger} = |\bar{\mathbf{z}}\rangle^{T}$$

 \Box

0010

 Ω

0 -- 0 0

PRACTICE: Convert |10>to<10|

$$\langle \mathbf{z}| = |\mathbf{z}\rangle^{\dagger} = |\bar{\mathbf{z}}\rangle^{T}$$

 \Box

0010

 Ω

0 -- 0 0

 $\overline{\mathbb{D}}$

0 4 0 0

$$\langle \mathbf{z}|=|\mathbf{z}\rangle^{\dagger}=|\bar{\mathbf{z}}\rangle^{T}$$

Inner Product

The $inner\ product$ of two quantum states $|\psi\rangle$ and $|\phi\rangle$ is defined as

$$|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$$

$$|\phi\rangle=\beta_0|0\rangle\!\!+\beta_1|1\rangle$$

$$\langle \psi | \cdot | \phi \rangle = \langle \psi | | \phi \rangle$$

Must convert from Ket to Bra

$$\langle \psi | \phi \rangle = \left[\overline{\alpha}_0 \quad \overline{\alpha}_1 \right] \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$
$$= \overline{\alpha}_0 \beta_0 + \overline{\alpha}_1 \beta_1$$

e result of an inner product is a scalar (single value)

Example: Inner Product

her Product
$$\langle +|0\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \frac{1}{\sqrt{2}} * 1 + \frac{1}{\sqrt{2}} * 0$$
$$= \frac{1}{\sqrt{2}}$$

Rules for Qubit Basis Sets Digging Deeper

A set of basis vectors, $X = \{x_1, x_2\}$, must be *orthonormal*:

All included vectors are orthogonal (perpendicular)

$$\langle \mathbf{x}_1 | \mathbf{x}_2 \rangle = 0$$

Each vector has a norm (distance) of 1

$$\langle x_1 | x_1 \rangle = |x_1| = 1$$

Transpose: $\begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \alpha_0 & \alpha_1 \end{bmatrix}$

Complex Conjugate:

$$c = a + bi$$
$$\bar{c} = a - bi$$

$$\langle \mathbf{z}| = |\mathbf{z}\rangle^{\dagger} = |\bar{\mathbf{z}}\rangle^{T}$$

Euclidean Distance/Norm:

$$\begin{aligned} |\mathbf{z}| &= \sqrt{|z_1|^2 + |z_2|^2 + \dots + |z_n|^2} \\ &= \sqrt{z_1 \overline{z_1} + z_2 \overline{z_2} + \dots + z_n \overline{z_n}} \end{aligned}$$

Vector Distance

'tip to tail' Euclidean distance (also called Euclidean norm) is the distance of a vector from

$$\begin{aligned} |\mathbf{z}| &= \sqrt{|z_1|^2 + |z_2|^2 + \dots + |z_n|^2} \\ &= \sqrt{z_1 \overline{z_1} + z_2 \overline{z_2} + \dots + z_n \overline{z_n}} \end{aligned}$$

Applied Complex Linear Algebra: Rules for Qubit Basis Sets

A set of basis vectors, $X = \{x_1, x_2\}$, must be **orthonormal**:

 All included vectors are orthogonal (perpendicular)

$$\langle \mathbf{x}_1 | \mathbf{x}_2 \rangle = 0$$

Each vector has a norm (distance) of 1

$$\langle \mathbf{x}_1 | \mathbf{x}_1 \rangle = |\mathbf{x}_1| = 1$$

Transpose: $\begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \alpha_0 & \alpha_1 \end{bmatrix}$

Complex Conjugate:

$$c = a + bi$$
$$\bar{c} = a - bi$$

Bra-Ket Notation: |Ket>to<Bra| conversion

$$\langle \mathbf{z}| = |\mathbf{z}\rangle^{\dagger} = |\bar{\mathbf{z}}\rangle^{T}$$

Euclidean Distance/Norm:

$$\begin{aligned} |\mathbf{z}| &= \sqrt{|z_1|^2 + |z_2|^2 + \dots + |z_n|^2} \\ &= \sqrt{z_1 \overline{z_1} + z_2 \overline{z_2} + \dots + z_n \overline{z_n}} \end{aligned}$$

Example: Check Orthonormality

The Computational Basis: |0>and |1>

All included vectors are orthogonal (perpendicular), $\langle x_1 | x_2 \rangle = 0$

$$\langle 0|1\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}^{\dagger} \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} = 0$$

Each vector has a norm (distance) of $1,\langle x_1|x_1\rangle = |x_1| = 1$

$$\langle 0|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^{\dagger} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \langle 1|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{\dagger} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1 \qquad = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1$$