
Module 1
Course Logistics & Introduction to Parallel Programming

MPCS 52060: Parallel Programming

University of Chicago

Agenda

1. Course Logistics
2. Introduction to Parallel Programming

• Motivation for parallelism
• Evolution of modern machines
• Why parallelism is important?

3. Course language [if time permits]

1/30

Course Logistics

• All course information is located on the course website:
https://classes.cs.uchicago.edu/archive/2022/
spring/52060-1/index.html

2/30

https://classes.cs.uchicago.edu/archive/2022/spring/52060-1/index.html
https://classes.cs.uchicago.edu/archive/2022/spring/52060-1/index.html

Motivation for Parallelism

The Basic Architecture of a Computer

Named after the Hungarian mathematician/genius John Von
Neumann who first authored the general requirements for an
electronic computer in his 1945 papers

He came up with the basic architecture that virtually all computers
today still follow (to a degree).

• The architecture is comprised
of four main components:

• Main Memory

• Control Unit

• Arithmetic Logic Unit

• Input/Output

3/30

The Basic Architecture of a Computer (cont.)

• Main Memory
• This is a collection of locations, each of which is capable of storing
both instructions and data.

• Every location consists of an address, which is used to access the
location, and the contents of the location.

• CPU : Divided into two parts
• Control unit - responsible for deciding which instruction in a
program should be executed. (the boss)

• Arithmetic and logic unit (ALU) - responsible for executing the
actual instructions. (the worker)

• Input/Output
• is the interface to the human operator

Why does this all matter?

• Computers still follow this basic design, just multiplied in units
(multiprocessor). The fundamental architecture remains the
same.

4/30

Serial Programming

As programmers, we are overwhelmingly accustomed to developing
software for serial computation1

• A problem is broken down into discrete steps
• Each step (i.e., instruction) is executed one by one
• Each instruction is executed on a single process
• Only a single instruction is executed at a time

1Source: Blaise Barney, Lawrence Livermore National Laboratory
5/30

https://computing.llnl.gov/tutorials/parallel_comp/#Whatis

Serial Programming Example

Simple example of serial computation:

• Task: Develop a program that gathers data about route
information from different cities. The overall objective is to use
this program to help develop a classifier to tell a user whether
to buy a ticket now or later.

6/30

Crawler Components

Components of the application:

• A web crawler that scrapes the
https://www.faredetective.com/farehistory/ for
route information. Scrapes all cities provided on the website
lettered A-Z on different pages.

• Program Output: A CSV file with lowest-cost fare information
from the cities listed on the site.

7/30

https://www.faredetective.com/farehistory/

Crawler Output

Visual of program output:

8/30

Crawler Performance

Execution time (in seconds):

9/30

Is Serial Computation Good Enough?

Since 2002, single-processor performance improvement has slowed
to about 20% per year. Maybe not?

History of Hardware Trends

• Increase in single processor performance has been driven by
increasing the density of transistors.

• Transistors: electronic components on integrated circuits that
act as switches in order to construct logical gates. We use logic
gates to form logical units capable of arithmetic and complex
logical operations.

• As the size of the transistors decreases, their speed can be
increased, and the overall speed of the integrated chip will be
increased (i.e., increasing clock rate).

10/30

Moore’s Law

Moore’s Law: computing power tends to approximately double every
two years.

• What the law really means is that the number of transistors that
can be packed into a given unit of space will roughly double
every two years.

11/30

History of Moore’s Law

12/30

But wait...There’s a Problem!

Transistors are starting to suffer power consumption and integrity
issues:

• As the speed of transistors increases, their power consumption
also increases.

• Power consumption is dissipated as heat and when an integrated
circuit gets hot it becomes unreliable.

• Transistor gates have become too thin, affecting their structural
integrity, which leads to currents starting to leak.

13/30

But wait...There’s a Problem! (cont.)

• We are reaching the limits of how much air-cooled integrated
circuits can effectively dissipate heat.

• Overall, its becoming impossible to continue to increase the
speed of integrated circuits (hovering around 3.0GHz-3.7Ghz).
Although with overclocking we’ve, seen this rise between
4.0GHz-4.9GHz.

Additionally physical manufacturing problems such as quantum
tunneling (the inability to keep electrons contained beyond a certain
thickness threshold) is also leading to a slow in single processor
production.

14/30

Parallel Programming Overview

Multi-core Processors to the Rescue

How can we continue to increase transistor density?: Parallelism

• No more complex and monolithic single processors.
• Instead the focus is on transitioning to multiple, simple and
complete processors on one chip (multicore processors).

• Terminology:
• Core : synonymous with central processing unit (CPU)
• Multicore: more than one core on an integrated circuit.

15/30

What is Parallel Programming?

Parallel Computing: Simultaneously using multiple compute
resources to solve a computational complex problem:2

• A problem is broken down into discrete parts to be executed
concurrently.

• Each part contains their own set of instructions .
• Instructions from each part execute simultaneously on different
processors.

• Synchronization between each part needs to happen to achieve
determinism.

2Source:Blaise Barney, Lawrence Livermore National Laboratory

16/30

https://computing.llnl.gov/tutorials/parallel_comp/#Whatis

Crawler Parallel Design

17/30

Crawler Execution Time (Updated)

Execution time (in seconds) with a parallel component for our
crawler:

18/30

Real-World Multicore Architectures: Intel’s Alder Lake-S Silicon

Die shot of the Alder Lake- processors. These are Intel’s newest
(January 2022) processors used in the Core i9-12900K, Core i7-12700K,
and Core i5-12600K, and other Intel chips.

• 8-6 Performance CPU cores (normal CPU cores that are large,
and run at high clock-speed)

• 8-4 Efficient CPU cores (small CPU cores that run at reduced
clock speed)

19/30

Real-World Multicore Architectures: Apple Silicon

20/30

Uses of Parallelism

More industries (industrial and commercial) in the world are
requiring more computing power to solve complex tasks.

• Weather forecast: Based on complex mathematical models
involving partial differential equations.

• Crash Simulations: car industry uses finite element methods to
perform crash simulations.

• Energy Research: detailed models of technologies such as wind
turbines, solar cells, and batteries can help construct more
efficient clean energy sources.

• Data Analysis (“Big Data”, databases, Web search): We are
generating tremendous amounts of data that need to be
analyzed requires more computational power.

• Computer Graphics: more rendering power is needed to make
more realistic effects in film.

21/30

Parallel Programming Summary

In summary, what are the main reasons for parallel programming?

• Saving time and money
• Having more resources reduces the time to complete a task, which
saves money

• Parallel computers can be built from cheap components
• Solve more complete problems

• As I mentioned already, many problems are so large and/or
complex that it is impractical or impossible to solve using serial
computation.

• Provide concurrency:
• A single compute resource can only do one thing at a time.
Multiple compute resources can do many things simultaneously.

22/30

Parallel Programming Summary (cont.)

• Take advantage of remote resources:
• When local resources are scarce or insufficient then using remote
resources (supercomputer, or interconnected computers over the
internet).

• Make use of the parallel hardware:
• Modern computers, even laptops, are parallel in architecture with
multiple processors/cores.

• Serial programs run on modern computers ”waste” potential
computing power.

In general, compared to serial computing, parallel computing is
much better suited for modeling, simulating and understanding
complex, real world phenomena.

23/30

What will you learn in this course?

Main objectives:

• Understanding parallel architectures for fine tuning performance
• Synchronization mechanisms to maintain deterministic results
• Best practices for designing parallel programs

• Partitioning at the task and data levels

• Work Distribution Techniques: algorithms, patterns and
techniques to help with maintaining performance when scaling
your application.

Overall Goal: Regardless of your programming language of choice (C,
Java, Python etc.), you should be able to use the techniques,
algorithms, patterns, and practices taught in this class and apply
them to developing parallel applications in those languages.

24/30

Tentative Roadmap

25/30

Aside: Classical Use of Parallelism

History: Parallel programming and design of efficient parallel
programs is well established in high performance computing (HPC)
for many years.

• Specifically for solving scientific problems using simulations.
• More precise simulation(s) of larger problems need greater
computing power and space.

• HPC research and developed led to new developments in
parallel hardware and software technologies.

• Hardware: cluster systems that are built up from server nodes
where computations to be preformed are partitioned into parts
and are assigned to parallel resources.

26/30

Video: Go Bootcamp (Homework
1)

Design of Go

Go was designed by Google (specifically Rob Pike, Kenneth
Thompson in 2007) to solve problems that Google faces.

Goals

• Eliminate slowness
• Inefficiencies
• Maintain and improve scale

Types of problems Google faces?

• C++ for servers, plus lots of Java and Python mixed in
• Large employee base
• Millions upon Millions of lines of code for various projects
• Distributed build system
• Millions of compute cluster machines, needing to perform tasks

28/30

Who uses Go?

3

3https://www.quora.com/
Other-than-Google-what-companies-are-using-Go-in-production

29/30

https://www.quora.com/Other-than-Google-what-companies-are-using-Go-in-production
https://www.quora.com/Other-than-Google-what-companies-are-using-Go-in-production

How are we going to learn Go?

We are actually going to learn Go by going through examples shown
on: https://gobyexample.com
Syntax you should know:

• Values
• Variables
• Constants
• Importing
• For
• If/Else
• Switch

• Arrays and Slices
• Maps
• Range
• Functions
• Multiple Return
Values

• Variadic
Functions

• Pointers
• Structs
• String
Formatting and
Functions

30/30

https://gobyexample.com

	Motivation for Parallelism
	Parallel Programming Overview
	Video: Go Bootcamp (Homework 1)

