
Lamont Samuels 

MPCS 51300 - Compilers

M2: Lexical Analysis (Scanner)

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit
permission to make copies of these materials for their personal use.

Faculty from other educational institutions may use these materials
for nonprofit educational purposes, provided this copyright notice is
preserved.

Remote Students please mute your
microphones, thank you.

MPCS 51300 - Compilers

Agenda

• Lexical analysis overview

• Regular expressions

• (Nondeterministic) finite state automata (NFA)

• Converting NFAs to deterministic finite state automata

(DFAs)

• Coding a Scanner

2

MPCS 51300 - Compilers

Lexical Analysis
• The main object of lexical analysis is to break the input source

code into individual words, known as tokens (or lexemes)

• A lexical token is a series of character that can be treated as

distinct objects that can carry associated data with them (e.g.,
numeric value, variable name, line numbers, etc.)

- We use these tokens for next step of parsing

• A language classified lexical tokens into token types

• Lexical analysis may ignore whitespace and comments, or
items not required to understand the meaning of the program.

3

Token Type Examples

ID bar num myList

INT 2 100 0 089

REAL 33.2 0.6 1e78

IF if

RPAREN)

MPCS 51300 - Compilers

Lexical Analysis Goal (Review)

• Input source code:

• Character Stream:

• Token Stream:

4

if (x==y) x=45;

I f (x = = y) x = 45 ;

IF LPAREN ID(x) EQ ID(y) RPAREN ID(x) ASSIGN INT(45) SCOLON

MPCS 51300 - Compilers

Lexical Analysis: Specifying Tokens

• The first step in lexical analysis is determining how we can specify
our tokens.

• Most compilers use regular expressions to describe programming
language tokens

- A regular expression R defines a regular language L, which is a
set of strings over some alphabet 𝛴, such as ASCII characters
or unicode.

- Each member of the set is known as a word or sentence.

- L(R) is the “language” defined by R

‣ L(xyz) = { “xyz” }

‣ L(hello | world) = {“hello”, “world”}

‣ L([1-9][0-9]*) = all positive integer constants without a

leading zero

• Goal: Define a regular expression for each kind of token

5

MPCS 51300 - Compilers

Regular Expression Fundamental
Notation

• Given an alphabet 𝛴, the regular expressions over 𝛴 and their corresponding regular
languages are

- ∅ denotes the empty set (empty language)

- ε denotes the empty string

- for each a in 𝛴, a denotes { a } the singleton set or the literal set

- (Alternation) If R denotes L(R) and S denotes L(S) then R | S denotes any

string from either L(R) or L(S)

‣ L(R|S) = L(R) ∪ L(S)

- (Concatenation) If R denotes L(R) and S denotes L(S) then RS denotes a
string from L(R) followed by a string from L(S):

‣ L(RS) = {rs | r∈L(R) ^ s∈L(S)}

- (Kleene star) If R denotes L(R) then R* denotes zero or more strings from
L(R) concatenated together.

‣ (ε | R | RR | RRR | RRRR | …)

• Parentheses can be used to group REs if necessary

• Precedence (highest to lowest): parentheses, kleene star, concatenation, alternation

6

MPCS 51300 - Compilers

Regular Expression Examples

7

Regular Expression Strings in L(R)

a {“a”}

ab {“ab”}

a | b {“a”, “b”}

(ab)* {“”, “ab”, “abab”, “ababa”, …}

MPCS 51300 - Compilers

Convenient Regular Expression
Shorthand

• The basic regular expression operations can produce all
possible regular expressions; however, abbreviations exist
for convenience

• Note: There are many more abbreviations than these.

8

Abbreviation Meaning Explanation

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (A | b | c | … | z) 1 character in given range

[abcde] (A | b | c | d | e) 1 of the given characters

MPCS 51300 - Compilers

Lexical Specification

• We can define a lexical specification, which defines
regular expressions to specify tokens

9

Regular Expression Token

else ELSE

[a-z][a-z0-9]*
 ID

[0-9]+ INT

MPCS 51300 - Compilers

Regular Expression Implementation

• How do we actually implement from a machine
perspective the regular expressions in the specification?

• The beginnings of implementing a scanner for

languages is done by first converting the regular
expressions into finite automata

- A machine that recognize patterns.

- Given a string s, the scanner says “yes” if x is a

word of the specified language and says “no” if
cannot determine if it is part of the language.

• In order to understand finite automata you must
understand transition diagrams.

10

MPCS 51300 - Compilers

Transition Diagram
• A flowchart that contains states and edges

- Each edge is labeled with a character

- A subset of states are designated as final (i.e.

accepting) states.

• Transitions from state to state proceed along edges

based on the next character from the character stream.  

• Every string that ends in a final state is accepted

• If transitioning gets “stuck”; there is no transition for a

given character then it’s an error.

11

Legend
Normal State
Final State

0 1 2Start a b
a

MPCS 51300 - Compilers

Finite Automata

• Similar to transition diagrams

- Have states and labelled edges

- One unique start state and potentially one or more final states

• Types of finite automata

• Nondeterministic Finite Automata (NFA):

- Can label edges with ε

- A character can label 2 or more edges out of the same state  

• Deterministic Finite Automata (DFA):

- No edges can be labeled with ε

- A character can label at most one edge out of the same state

• Both NFAs and DFAs accepts a string x if there exists a path from start state to a final
state labeled with characters in x

- NFA can have multiple paths that could accept x

- DFAs has only one unique path that could accept x

12

MPCS 51300 - Compilers

NFA Example

• The following NFA is for the regular expression: a*ab

• There are many possible moves to accept a string for the regular
expression. We only just need one sequence of moves

 Input string: aaab 
 
Successful sequence:  
 
Unsuccessful sequence:

13

Legend
Normal State
Final State

0 3Start a bε
1 2

a

0 0 0
a a ε

1 2
a

3
b

0 0 0
a a a

0 1
ε

MPCS 51300 - Compilers

DFA Example

• The following DFA is for the regular expression: a*ab

 Input string: aaab 
 
Successful sequence:

14

Legend
Normal State
Final State

0Start ba
1 2

a

0 1 1
a a a

1 2
b

MPCS 51300 - Compilers

Automating Scanner Construction

• Goal: We need to covert our regular expressions that
represent our tokens into finite automata so we can
easily execute the scanner to generate the tokens.

• Steps to convert a lexical specification into code:

1. Write down the RE for the input language

2. Build a big NFA

3. Build the DFA that simulates the NFA

4. Systematically shrink the DFA (not this course :-()

5. Turn it into actual code

15

MPCS 51300 - Compilers

Regular Expression -> NFA

• Use Thompson construction rules to convert regular
expressions into NFA form.

- Always use unique names for all states

- Always have at most one final state.

- Combine your regular expressions with ε-moves

• Epsilon (ε)

• Literal ‘a’ (a ∈ ∑)

16

ε

Legend
Normal State
Final State

a

MPCS 51300 - Compilers

Regular Expression -> NFA

• Concatenation R1R2

• Alternation R1 | R2

17

Legend
Normal State
Final State

R2R1 ε

R2

R1
ε

ε

ε

ε

MPCS 51300 - Compilers

Regular Expression -> NFA

• Kleene star R*

18

Legend
Normal State
Final State

R1
ε

ε

ε

ε

MPCS 51300 - Compilers

Regular Expression -> NFA

• Lets covert the regular expression: “a(b | c)*” to an NFA
using Thompson construction rules

1. We will do the basic construction for the alphabet of the
regular expression (i.e., literals “a”, “b”, and “c”)

19

0 a 1 2 b 3 4 c 5

MPCS 51300 - Compilers

Regular Expression -> NFA

• Lets covert the regular expression: “a(b | c)*” to an NFA
using Thompson construction rules

2. We will use the alteration rule to construct “b | c”, where
R1 = “b” and R2 = “c”

20

R2

R1ε

ε

ε

ε

2 b 3

4 c 5

6 7
ε

ε

ε

ε

MPCS 51300 - Compilers

Regular Expression -> NFA
• Lets covert the regular expression: “a(b | c)*” to an NFA

using Thompson construction rules

3. We will use the Kleene rule to construct “(b | c)*”, where
R1 = “(b | c)*”

21

2 b 3

4 c 5

6 7
ε

ε

ε

ε
8 9

ε

εε

ε R1
ε

ε

ε
ε

MPCS 51300 - Compilers

Regular Expression -> NFA
• Lets covert the regular expression: “a(b | c)*” to an NFA

using Thompson construction rules

4. We will use concatenation rule to construct “a(b | c)*”,
where R1 = “a” and R2 = “(b | c)*”

22

2 b 3

4 c 5

6 7
ε

ε

ε

ε
8 9

ε

εε

ε

R2R1 ε

0 a 1 ε

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

23

The algorithm:

s0 ← ε-closure({n0})

S ← { s0 }

W ← { s0 }

while (W ≠ Ø)

	 select and remove s from W

	 for each α ∈ Σ

	 	 t ← ε-closure(Move(s,α))

	 	 T[s,α] ← t

	 	 if (t ∉ S) then

	 	 	 add t to S

	 	 	 add t to W

Let’s think about why this works

The algorithm halts:

1. S contains no duplicates

 (test before adding)

2. There is finite number of

NFA states

3. while loop adds to S, but

 does not remove from S

(monotone)

⇒ the loop halts
⇒ S and T form the DFA

s0 is a set of states

S & W are sets of sets of states

• Two key functions

- Move(si , a) is the set of

states reachable from si by a

- ε-closure(si) is the set of

states reachable from si by ε

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

24

a (b | c)* :

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

 States ε-closure(Move(s,*))

DFA NFA a b c

s0 q0 q1, q2, q3,

q4, q6, q9

none none

s1 q1, q2, q3,

q4, q6, q9

none q5, q8, q9,

q3, q4, q6

q7, q8, q9,

q3, q4, q6

s2 q5, q8, q9,

q3, q4, q6

none s2 s3

s3 q7, q8, q9,

q3, q4, q6

none s2 s3

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

25

a (b | c)* :

 States ε-closure(Move(s,*))

DFA NFA a b c

s0 q0
q1, q2, q3,

q4, q6, q9

none none

s1 q1, q2, q3,

q4, q6, q9

none q5, q8, q9,

q3, q4, q6

q7, q8, q9,

q3, q4, q6

s2 q5, q8, q9,

q3, q4, q6

none s2 s3

s3 q7, q8, q9,

q3, q4, q6

none s2 s3

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

26

a (b | c)* :

 States ε-closure(Move(s,*))

DFA NFA a b c

s0 q0
q1, q2, q3,

q4, q6, q9

none none

s1 q1, q2, q3,

q4, q6, q9

none q5, q8, q9,

q3, q4, q6

q7, q8, q9,

q3, q4, q6

s2 q5, q8, q9,

q3, q4, q6

none s2 s3

s3 q7, q8, q9,

q3, q4, q6

none s2 s3

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

27

a (b | c)* :

 States ε-closure(Move(s,*))

DFA NFA a b c

s0 q0
q1, q2, q3,

q4, q6, q9

none none

s1 q1, q2, q3,

q4, q6, q9

none q5, q8, q9,

q3, q4, q6

q7, q8, q9,

q3, q4, q6

s2 q5, q8, q9,

q3, q4, q6

none s2 s3

s3 q7, q8, q9,

q3, q4, q6

none s2 s3

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

28

a (b | c)* :

 States ε-closure(Move(s,*))

DFA NFA a b c

s0 q0
q1, q2, q3,

q4, q6, q9

none none

s1 q1, q2, q3,

q4, q6, q9

none q5, q8, q9,

q3, q4, q6

q7, q8, q9,

q3, q4, q6

s2 q5, q8, q9,

q3, q4, q6

none s2 s3

s3 q7, q8, q9,

q3, q4, q6

none s2 s3

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

29

a (b | c)* :

 States ε-closure(Move(s,*))

DFA NFA a b c

s0 q0
q1, q2, q3,

q4, q6, q9

none none

s1 q1, q2, q3,

q4, q6, q9

none q5, q8, q9,

q3, q4, q6

q7, q8, q9,

q3, q4, q6

s2 q5, q8, q9,

q3, q4, q6

none s2 s3

s3 q7, q8, q9,

q3, q4, q6

none s2 s3

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

30

a (b | c)* :

 States ε-closure(Move(s,*))

DFA NFA a b c

s0 q0
q1, q2, q3,

q4, q6, q9

none none

s1 q1, q2, q3,

q4, q6, q9

none q5, q8, q9,

q3, q4, q6

q7, q8, q9,

q3, q4, q6

s2 q5, q8, q9,

q3, q4, q6

none s2 s3

s3 q7, q8, q9,

q3, q4, q6

none s2 s3

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

31

a (b | c)* :

 States ε-closure(Move(s,*))

DFA NFA a b c

s0 q0
q1, q2, q3,

q4, q6, q9

none none

s1 q1, q2, q3,

q4, q6, q9

none q5, q8, q9,

q3, q4, q6

q7, q8, q9,

q3, q4, q6

s2 q5, q8, q9,

q3, q4, q6

none s2 s3

s3 q7, q8, q9,

q3, q4, q6

none s2 s3

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

32

a (b | c)* :

 States ε-closure(Move(s,*))

DFA NFA a b c

s0 q0
q1, q2, q3,

q4, q6, q9

none none

s1 q1, q2, q3,

q4, q6, q9

none q5, q8, q9,

q3, q4, q6

q7, q8, q9,

q3, q4, q6

s2 q5, q8, q9,

q3, q4, q6

none s2 s3

s3 q7, q8, q9,

q3, q4, q6

none s2 s3

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

33

a (b | c)* :

 States ε-closure(Move(s,*))

DFA NFA a b c

s0 q0
q1, q2, q3,

q4, q6, q9

none none

s1 q1, q2, q3,

q4, q6, q9

none q5, q8, q9,

q3, q4, q6

q7, q8, q9,

q3, q4, q6

s2 q5, q8, q9,

q3, q4, q6

none s2 s3

s3 q7, q8, q9,

q3, q4, q6

none s2 s3

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

34

a (b | c)* :

 States ε-closure(Move(s,*))

DFA NFA a b c

s0 q0
q1, q2, q3,

q4, q6, q9

none none

s1 q1, q2, q3,

q4, q6, q9

none q5, q8, q9,

q3, q4, q6

q7, q8, q9,

q3, q4, q6

s2 q5, q8, q9,

q3, q4, q6

none s2 s3

s3 q7, q8, q9,

q3, q4, q6

none s2 s3

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

35

a (b | c)* :

 States ε-closure(Move(s,*))

DFA NFA a b c

s0 q0
q1, q2, q3,

q4, q6, q9

none none

s1 q1, q2, q3,

q4, q6, q9

none q5, q8, q9,

q3, q4, q6

q7, q8, q9,

q3, q4, q6

s2 q5, q8, q9,

q3, q4, q6

none s2 s3

s3 q7, q8, q9,

q3, q4, q6

none s2 s3

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

ε

Final states because of q9

MPCS 51300 - Compilers

NFA →DFA with Subset Construction

• The DFA for a (b | c)*

• Much smaller than the NFA (no ε-transitions)

• All transitions are deterministic

• Use same code skeleton as before

36

s3

s2

s0 s1

c

b
a

b

c

c

b a b c

s0 s1 none none

s1 none s2 s3

s2 none s2 s3

s3 none s2 s3

MPCS 51300 - Compilers

Coding a Scanner: Table- Driven
• The common strategy is to simulate a DFA execution.

• One strategy is to implement a Table-Driven Scanner for

DFA execution.

• Make heavy use of indexing

• Read the next character

• Classify it

• Find the next state

• Branch back to the top

37

index

index

state ← s0 ;

while (state ≠ exit) do

 char ← NextChar()

 cat ← CharCat(char)

 state ← δ(state,cat);

r 0, 1, 2, …, 9 EOF Other

Register Digit Other Other

State Register Digit Other

S0 S1 Se Se

S1 Se S2 Se

S2 Se Se Se

Se Se Se Se

δ(state,cat);

CharCat(char)

S0
r

S1 S2
0…9

0…9

Note: There is more to this code.  
I’m just not showing it.

MPCS 51300 - Compilers

Coding a Scanner: Direct Coding
• Table-Drive strategy is not thee best the lookups into the

various tables can be expensive.

• Alternative strategy: direct coding

- Encode state in the program counter

‣ Each state is a separate piece of code

- Do transition tests locally and directly branch

- Generate ugly, spaghetti-like code 

38

MPCS 51300 - Compilers

Lexical Specification (cont.)

• Ambiguity: How do you break up text? Is the token stream 1
or 2?

• Regular expressions are not enough to handle ambiguity.

• Most languages will choose the longest matching token

- longest initial substring of the input that can match a
regular expression is taken as next token

- Ties in length are resolved by prioritizing the specification.

• Lexical specification = regular expressions + priorities +

longest-matching token rule.

39

elsex =45;

else x = 45 ;

1 2

elsex = 45 ;

MPCS 51300 - Compilers

Coding a Scanner: Direct Coding

40

start: accept ← se

 lexeme ← “”

 count ← 0

 goto s0

s0: char ← NextChar

 lexeme ← lexeme + char

 count++

 if (char = ‘r’)

 then goto s1

 else goto sout

s1: char ← NextChar

 lexeme ← lexeme + char

 count++

 if (‘0’ ≤ char ≤ ‘9’)

 then goto s2

 else goto sout

s2: char ← NextChar

 lexeme ← lexeme + char

 count ← 1

 accept ← s2

 if (‘0’ ≤ char ≤ ‘9’)

 then goto s2

 else goto sout

sout: if (accept ≠ se)

 then begin

	 for i ← 1 to count

	 RollBack()

 report success

 end

 else report failure

S0
r

S1 S2
0…9

0…9

MPCS 51300 - Compilers

What About Hand-Coded Scanners?

Many (most?) modern compilers use hand-coded scanners

• Starting from a DFA simplifies design & understanding

• Avoiding straight-jacket of a tool allows flexibility

- Computing the value of an integer

‣ In LEX or FLEX, many folks use sscanf() & touch

chars many times

‣ Can use old assembly trick and compute value as

it appears

- Combine similar states

• Scanners are fun to write

• Compact, comprehensible, easy to debug, …

41

MPCS 51300 - Compilers

Building Scanners Review

The point

• All this technology lets us automate scanner construction

• Implementer writes down the regular expressions

• Scanner generator builds NFA, DFA, minimal DFA, and then

writes out the (table-driven or direct-coded) code

• This reliably produces fast, robust scanners

For most modern language features, this works

• You should think twice before introducing a feature that

defeats a DFA-based scanner

• The ones we’ve seen (e.g., insignificant blanks, non-reserved

keywords) have not proven particularly useful or long lasting

42

