
Lamont Samuels 

MPCS 51300 - Compilers

M1: Introduction to Compilers

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit
permission to make copies of these materials for their personal use.

Faculty from other educational institutions may use these materials
for nonprofit educational purposes, provided this copyright notice is
preserved.

Remote Students please mute your
microphones, thank you.

MPCS 51300 - Compilers

Agenda

• Course Logistics

• Introduction to compilers

- What is a compiler?

- Anatomy of a compiler

- Why should we learn about them?

• Course Language [if time permits]

2

MPCS 51300 - Compilers

Course Logistics

• Remote Students

– Please make sure you are muted when entering the discussion.

– You may unmute if you would like to ask question because I may not be

able to see you raise your hand or ask a question in the chat window.

– If you are encountering issues related to Zoom, please try shutting down

your machine and signing back in. These meetings are recorded so if
you miss them then you’ll be able to watch it at a later time.

• All course information is located on the course website 
 
https://classes.cs.uchicago.edu/archive/2021/fall/51300-1/index.html 

• First-time teaching this course so there will be some leniency in many
aspects of the course to benefit you all.  

3

https://classes.cs.uchicago.edu/archive/2021/fall/51300-1/index.html

MPCS 51300 - Compilers

What is a Compiler?

• Compilers are simply translators

- Translates between representations of program code

- Typically from a high-level source language to machine

language (object code)

• Not all compilers translate to machine code

- Java compiler: Translate java code to interpretable

JVM bytecode

- Java JIT: bytecode to machine code.

4

Source

code

Machine

codeCompiler

Errors

MPCS 51300 - Compilers

Compiler vs. Interpreter
Are compilers necessary to execution all program code?

• No! Programs can be simulated using an interpreter:

- A program that reads an executable program and
produces the results of executing that program.

• Most interpreters are at least 10x slower than compiled
code depending on the type of program.

5

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {

 int n, i, sum;

 n = atoi(argv[1]);

 for (sum = i = 0; i < n; ++i) {

 sum += 1;

 }

 printf("%d",sum);

 return 0;

}

#!/usr/bin/env python3
import sys

n = int(sys.argv[1])

sum = 0
for i in range(n):

 sum += 1  
print(sum)

clang sum.c -o sum && time ./sum 10000000 time ./sum.py 10000000

C: 0.05 seconds 
Python: 0.53 seconds 
C runs more than 10x faster

MPCS 51300 - Compilers

Compiler Input: Source Code

• Optimized for human readability

- Uses human notions of grammar to be more

expressible

- Redundant to help avoid programming errors

- The final result may not be fully determined by the

code.

6

int expr(int num)

{

 int value;

 value = (num + 1) * (num + 1) / 2;

 return value;

}

MPCS 51300 - Compilers

Compiler Output: Assembly/Machine
Code

• Optimized for hardware

- Ambiguity reduced

- Reasoning about what the code is doing is lost

7

_expr: ; @expr

; %bb.0:

sub sp, sp, #16 ; =16
.cfi_def_cfa_offset 16
str	 w0, [sp, #12]
ldr	 w8, [sp, #12]
add w8, w8, #1 ; =1
ldr	 w9, [sp, #12]
add w9, w9, #1 ; =1
mul w8, w8, w9

mov	 w9, #2
sdiv	w8, w8, w9

str	 w8, [sp, #8]
ldr	 w0, [sp, #8]
add sp, sp, #16 ; =16
ret

MPCS 51300 - Compilers

Compiler Output: Optimized vs
Unoptimized

8

_expr:

; %bb.0:

sub sp, sp, #16
.cfi_def_cfa_offset 16
str	 w0, [sp, #12]
ldr	 w8, [sp, #12]
add w8, w8, #1
ldr	 w9, [sp, #12]
add w9, w9, #1
mul w8, w8, w9

mov	 w9, #2
sdiv	w8, w8, w9

str	 w8, [sp, #8]
ldr	 w0, [sp, #8]
add sp, sp, #16
ret

_expr:

; %bb.0:

add w8, w0, #1
mul w8, w8, w8

lsr	 w0, w8, #1
ret

Unoptimized Code Optimized Code

MPCS 51300 - Compilers

Compiler Translations
• How does a compiler effectively translate high-level source code to low-level machine

code?

- Remember at the lowest level, a computer only knows about the binary

encodings of 1s and 0s, which represents hardware instructions and data.

• A compiler translates the original source code into different program representations
known as intermediate representations:

- These representations are designed to support the necessary program
manipulations:

‣ Type checking

‣ Static analysis

‣ Optimization

‣ Code generation

9

int expr(int num)

{

 int value;

 value = (num + 1) * (num + 1) / 2;

 return value;

}

_expr:

; %bb.0:

add w8, w0, #1
mul w8, w8, w8

lsr	 w0, w8, #1
ret

Compiler 
 ?

Input Output

a = b x c + d

e = f + b x c + d

load @b ⇒ r1

load @c ⇒ r2

mult r1,r2 ⇒ r3

load @d ⇒ r4

add r3,r4 ⇒ r5

store r5 ⇒ @a

load @f ⇒ r6

add r5,r6 ⇒ r7

store r7 ⇒ @e

reuses

b x c + d

computes

b x c + d

MPCS 51300 - Compilers

Anatomy of a Compiler

• At a high level, a compiler contains two main parts:

- Front end: analysis

- Analyze the source code and determine its
structure and meaning to generate an
intermediate representation.

• Back end: synthesis

- Generate low-level code for the target platform

10

Source

code

Front

End

Errors

Machine

code

Back

EndIR

Depends primarily
on source language

Depends primarily
on target machine

MPCS 51300 - Compilers

Anatomy of a Compiler: Implications

• A compiler must do the following during its translation
process:

- Must recognize legal (and complain illegal) programs

- Must generate correct code

‣ It can attempt to improve (“optimize”) code, but
must not change a code’s behavior (“meaning”)

- Must manage storage of all variables (and code)

- Must agree with OS & linker on format for object code

11

Source

code

Front

End

Errors

Machine

code

Back

EndIR

Depends primarily
on source language

Depends primarily
on target machine

MPCS 51300 - Compilers

Anatomy of a Compiler: Implications

• Each phase of the compiler uses intermediate
representation(s) (IR) to pass along results from its
phase to another

- Front end maps source into an IR

- Back end maps IR to target machine code

- Compilers do often has multiple IRs - higher at first,

lower level in later phases.

12

Source

code

Front

End

Errors

Machine

code

Back

EndIR

Depends primarily
on source language

Depends primarily
on target machine

MPCS 51300 - Compilers

Anatomy of a Compiler: Front End
• Contains two main components:

- Scanner - Maps character stream into a token stream: keywords, operators,
variables, constants, etc.

‣ Also removes all white space, and comments

- Parser: Reads in the tokens from the token stream and generates an IR

• Also performs semantics analysis to check for type errors, etc.

• Both these components can be automatically generated

- Define a formal grammar to specify the source language

- An existing software tool will read the grammar and generate a scanner &

parser  
(e.g., ANTLR for C/C++, Java and Go, or flex/bison for C/C++)

13

Source

code Scanner

IR
Parser

Errors

tokens

MPCS 51300 - Compilers

Front End: Scanner Example

• Input source code:

• Character Stream:

• Token Stream:

- Tokens are distinct objects that can carry associated
data with them (e.g., numeric value, variable name,
etc.)

- Whitespace and comments are not tokens.

14

if (x==y) x=45;

I f (x = = y) x = 45 ;

IF LPAREN ID(x) EQ ID(y) RPAREN ID(x) ASSIGN INT(45) SCOLON

MPCS 51300 - Compilers

Front End: Parser

• Responsible for taking the token stream and producing
an IR output that captures the meaning of the program.

• Most common output is an Abstract Syntax Tree (AST)

- Contains meaning of program without syntactic

noise

- Internal nodes are operations, and leafs are

operands

- Known as the “natural” IR

• AST is not the only possible output

- Parse Tree/ Syntax Tree is possible but usually

contains additional information that is not needed.

15

MPCS 51300 - Compilers

Front End: Scanner/Parser Example

• Input source code:

• Character Stream:

• Token Stream:

• Abstract Syntax Tree

16

if (x==y) x=45;

I f (x = = y) x = 45 ;

IF LPAREN ID(x) EQ ID(y) RPAREN ID(x) ASSIGN INT(45) SCOLON

IF

==

ID(X) ID(Y)

ASSIGN

ID(X) INT(45)

MPCS 51300 - Compilers

Static Semantic Analysis

• A step in the compiler that happens during parsing or
directly after to ensure a program is valid

- Performs type checking

- Verifies code adheres to language semantics

(e.g., correct variable declarations)

- Performs code shape determines many properties

of resulting program

• Collects additional information for the back end like
the Symbol Table(s)

- One symbol table maps names to types.

17

a ← b x c + d

e ← f + b x c + d

Is “a” distinct from b, c, & d ?

MPCS 51300 - Compilers

Anatomy of a Compiler: Back End
• Responsibilities

- Translate IR (AST) into target machine code

- Choose instructions to implement each IR operation

- Decide which value to keep in registers

- Ensure conformance with system interfaces

• Tries to produce the most “optimal” code

- optimal = fast, compact, low power (can’t have them all)

• Automation has been less successful in the back end

18

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

IR IR

MPCS 51300 - Compilers

Anatomy of a Compiler: Result
• Input

19

 sub sp, sp, #16
str	 w0, [sp, #12]
str	 w1, [sp, #8]
ldr	 w8, [sp, #8]
ldr	 w9, [sp, #12]
subs	 w8, w8, w9

b.ne	 LBB0_2

; %bb.1:

mov	 w8, #45
str	 w8, [sp, #8]

LBB0_2:

ldr	 w0, [sp, #8]
add sp, sp, #16

• Output

if (x==y) x=45;

IF

==

ID(X) ID(Y)

ASSIGN

ID(X) INT(45)

MPCS 51300 - Compilers

Wait! A Three-Part Compiler?
• Code Improvement (or Optimization)

- Analyzes IR and rewrites (or transforms) IR

- Primary goal is to reduce running time of the

compiled code

- May also improve space, power consumption, …

- Must preserve “meaning” of the code

- Measured by values of named variables

20

Errors

Source

Code

Optimizer

(Middle End)

Front

End

Machine

code

Back

End

IR IR

MPCS 51300 - Compilers

Anatomy of a Compiler: Optimizer
• Typical Transformations

- Discover & propagate some constant value

- Discover a redundant computation & remove it

- Remove useless or unreachable code

• Tradeoffs in optimization

- Ordering of optimization phases

- What works for some programs can be bad for others

21

Errors

Opt

1

Opt

3

Opt

2

Opt

n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

MPCS 51300 - Compilers

Anatomy of a Compiler: Creating an
Executable

22

Compiler 
(Front End &
Back End)

Assembler Linker Loader

Source code

Assembly  
Code

Object code 
(machine
code +
symbol
tables

Fully-
resolved
object code 
(machine
code +
symbol
tables+
libraries)

Running program 
(executable image in memory)

• Note: many compilers include the assembler and linker as
part of the compiler

Full Compiler

MPCS 51300 - Compilers

Why Study Compilers?
• Compiler construction involves ideas from many

different parts of computer science

23

Artificial intelligence Greedy algorithms

Heuristic search techniques

Algorithms Graph algorithms, union-find

Dynamic programming

Theory DFAs & PDAs, pattern matching

Fixed-point algorithms

Systems Allocation & naming,
Synchronization, locality

Architecture Pipeline & hierarchy management

Instruction set use

MPCS 51300 - Compilers

Why Study Compilers?
• Compilers are important

- Responsible for many aspects of system performance

- Attaining performance has become more difficult over time

‣ Compiler has become a prime determiner of
performance

• Compilers make you into a better programmer

- Provides insight into interaction between languages,

compilers, and hardware

- Allows you to understand how code maps to hardware

- Provides better intuition about what your code does

- Understanding how compilers optimize code helps you

write code that is easier to optimize

‣ Helps with not writing pointless code that “optimizes”

the performance when a compiler can do it better.

24

MPCS 51300 - Compilers

Why Go for this Course?

• Go was designed by Google (specifically Rob Pike, Kenneth
Thompson in 2007) to solve problems that Google faces.

• Goals

- Eliminate slowness

- Inefficiencies

- Maintain and improve scale

• Why is course?

- Relatively small language that has enough features to

implement a entire compiler efficiently

- Good module system that will allow use to easily test/debug the

various components of the compiler

- Everyone is on the same level and will be easier for class

interactions with each other and to get help when needed

25

MPCS 51300 - Compilers

How are we going to learn Go?

• We are actually going to learn Go by going through
examples shown on: https://gobyexample.com

• Topics to look at

- Values

- Variables

- Constants

- Importing

- For

- If/Else

- Switch

26

- Maps

- Range

- Functions

- Multiple Return Values

- Variadic Functions

- Pointers

- Structs

- String Formatting and Functions

https://gobyexample.com

