
CMSC 15100: Introduction to Computer Science I

The University of Chicago, Winter 2020

Adam Shaw and Kartik Singhal

https://www.classes.cs.uchicago.edu/archive/2020/winter/15100-1

Welcome! In CMSC 15100 (informally CS151 ), we introduce a selection of
major computer science topics through instruction in computer programming
and related analytical techniques.

CS151 is designed for students intending to major or minor in the subject.
Having said that, students in other areas who would like to sample something
of this elegant subject — not so much a taste of it as an immersion in it — are
pointedly welcome.

The specific goals of the course are these:

• to understand solving computational problems in terms of identifying,
and, when necessary, designing, relevant abstractions,

• to process data structures in several ways, most importantly by the tech-
nique of structural recursion,

• to learn to recognize and exploit common computational patterns through
code organization and higher-order programming,

• to learn to use simple and polymorphic types as a powerful approximation
of correctness in computer programs, and

• to analyze the efficiency of certain algorithms.

In pursuing these goals, students will become acquainted with a selection of clas-
sic data structures and algorithms. Broader, more technical treatments of these
topics, in particular algorithm analysis, are presented in later undergraduate
courses.

We use the Racket programming language in our studies. Racket is a dialect of
Scheme, a language with a long history in the field of computer science generally
and college-level instruction specifically. We use the Typed Racket variant of
Racket, for reasons we will articulate during the quarter (and will likely only
become clear to the student in hindsight, some years hence). In a few words, the
emphasis this course places on types makes for a richer, more horizon-stretching,
more interesting, more varied curriculum than otherwise.

Having completed this course, students will be able to use computer program-
ming as a robust and efficient method for analytical problem solving and creative

1

https://www.classes.cs.uchicago.edu/archive/2020/winter/15100-1


endeavors, and develop a sense of the relationship between computer program-
ming (an activity, useful and immediately profitable, which can be done poorly
or well) and computer science (an academic discipline with rigorous mathemat-
ical foundations and timeless insights). Students will discover, in future work,
that the experience gained in this course applies to programming generally, in
any programming language; that is, CS151 must not be thought of as a course
in Scheme (Racket) programming. Furthermore, students will have gained ex-
perience with certain best practices in the discipline, including practical ones.

Piazza: Online Support

Register with piazza. Piazza is an online question-and-answer system that we
use for that purpose as well as distribution of some course materials. You will
receive an email about piazza registration, with instructions, at your uchicago
email address at the start of the quarter, so make sure you check that email
address by that time.

Instructors

Adam Shaw, email: ams@cs.uchicago.edu, office: Crerar 213.

Kartik Singhal, email: ks@cs.uchicago.edu, office: Crerar 291.

The graduate teaching assistants this quarter are Anne Farrell, Tyler Skluzacek,
Qiming Wang, and Lang Yu. You will interact with them in person at labs and
during office hours.

Contacting Us

If you have questions about the course, and those questions are in a sense
impersonal — that is, they are about course material or course logistics — we
ask that you post those questions publicly on piazza, rather than contacting any
of the staff members directly. This ensures you will receive the fastest, most
consistent possible response from the staff. Since students usually have common
questions, posting public questions is efficient for your classmates as well. As
yet another advantage, it avoids duplication of work on the part of the staff.

In cases where you have a question that is about your own personal situation
and not relevant to the class as a whole, you may ask a “private question” on
piazza, which is invisible to your classmates, or send email to your instructor
directly.

A few piazza rules:

• Do not post any more than a snippet of code to piazza. Any post that
consists of “Here’s my hundred lines of code – what’s wrong with it?” will
be deleted immediately. Reflect on and focus your question before you
write it.

2



• Please do not post anonymously to piazza. Piazza posts are better, more
thoughtfully written, and more courteous when the author is identified.
Furthermore, we are committed to building a community where questions
are asked openly and enjoy respect from all constituencies — fellow stu-
dents and teachers alike. We reserve the right to delete anonymous posts
from piazza.

Lectures There are two sections of CS151 this quarter, at the following times
and places.

• Section 1: MWF 11:30–12:20, Stuart 104, Adam Shaw.

• Section 2: MWF 1:30–2:20, Rosenwald 011, Kartik Singhal.

The first lecture is on Monday, January 6; the last is on Wednesday, March 11.

Devices We do not allow the use of electronic devices during lectures. They
are simply too distracting. This includes laptops, smartphones, tablets, drones,
small robots, and anything that beeps, blinks, records, locomotes, etc. The lone
exception to this policy is that students whose handwriting issues necessitate
their use of a device for note taking will be permitted to use a plain text editor
on a laptop or tablet whose wireless capability is turned off. If you are such a
student, let your instructor know.

Lab Sessions Students must register for and attend lab sessions each week.
Lab sessions are held in the Computer Science Instructional Laboratory (also
known as the CSIL, pronounced “see-sil”). The CSIL is located on the first floor
of Crerar Library. Attendance at the lab session for which you are registered is
mandatory.

We offer six weekly lab sections at three different meeting times. If you need to
switch your lab time, there will be a way to do so during the quarter; details to
follow. You will work on one of the department’s Linux computers during your
lab session. You must use the department’s computer during lab; you may not
use your own laptop.

The lab times are as follows:

Wed 2:30pm–3:50pm; Wed 4:00pm–5:20pm; Wed 5:30pm-6:50pm

Office Hours The office hours schedule will be announced on the web once the
quarter starts. In addition to the office hours we provide, the College Core Tutor
Program employs computer science tutors Sunday through Thursday nights
from 7pm–11pm, starting in the second week of the quarter. The College Core
tutors are specifically charged with support of CS151 students, and are often
alums of the course themselves.

3



Week-Day Lecture Topics
1-M 1 expressions, types
1-W 2 images, booleans, conditionals
1-F 3 functions, tests
2-M 4 structures, local definitions
2-W 5 recursion, pattern matching
2-F 6 unions, images
3-M – Martin Luther King Jr. Day
3-W 7 monomorphic binary trees
3-F 8 polymorphic binary trees
4-M 9 linked lists
4-W 10 higher-order programming I
4-F 11 higher-order programming II (parametric polymorphism)
5-M 12 [EXAM] higher-order programming III (λ, currying)
5-W 13 universes
5-F 14 lambda, build-list
6-M 15 universes, modality, more λ
6-W 16 graphs I
6-F – college break
7-M 17 graphs II
7-W 18 graphs III
7-F 19 search trees I
8-M 20 search trees II
8-W 21 sorting
8-F 22 accumulators and tail recursion I
9-M 23 accumulators and tail recursion II
9-W 24 vectors I
9-F 25 vectors II
10-M 26 [EXAM] review
10-W 27 onward to CS152

Schedule of Topics by Week (subject to change)

Optional Text How to Design Programs, Felleisen et al. Over the years and as
our curriculum has evolved, we have departed from this text to such an extent
that we no longer require you to buy a copy. Moreover, the full text of the
book is available online at https://www.htdp.org free of charge. It is a useful
reference and a good book in its own right, and, despite various differences with
this course in its present form, has given our curriculum its shape and thematic
content.

Software All the software we use in this course is available free of charge for
all common platforms. We will mainly use DrRacket, available at https://

racket-lang.org, and git. Macintosh and Linux users very likely have git

4

https://www.htdp.org
https://racket-lang.org
https://racket-lang.org


on their machines already. Windows users will need to download and install
Cygwin, and will be able to include git in their Cygwin installations. We will
provide some assistance for various platforms once the quarter starts.

Grading Coursework is comprised of lab exercises (done at lab sessions, dis-
cussed above), homework assignments, projects, and two exams, both during the
quarter. Each student’s final grade will be computed according to the following
formula: lab exercises 20%, homework 20%, project work 20%, exams 20% each.
What precisely constitutes an A, B, etc. will be determined by the collective
performance of the class. Having said that, earning 92% assures at least an A-;
82% a B-; 72% a C-; 62% assures a D. We reserve the right to adjust that scale,
but we will not adjust any of those thresholds upward (that is, a 92% will not
quietly become a B+).

We know your grades are important to you. Nevertheless, when a grader has
deducted points on one of your pieces of work, your first response should be
to do your best to understand the reason for and the instructional lesson to be
learned from that action. In other words, every deduction is an opportunity for
you to improve. We do not encourage or enjoy haggling over individual point
totals.

Any requests for us to reconsider the way a piece of work was graded must be
communicated to us within one week of having received the evaluated work.

Homework There will be weekly homework assignments. These will be as-
signed on Monday or Tuesday (usually) and will be due the following Monday
(usually).

Projects There will be a longer multipart project during the latter part of the
term. The final part of this project will be due during exam week.

Exams There will be two exams for all students that will meet outside of class.

• midterm exam: Monday, Feb 3, 7pm–9pm, and

• final exam: Monday, March 9, 7pm–9pm.

Please plan accordingly, which is to say, make every effort not to plan anything
else for either of those times. Both exams are planned to be held in KPTC 120
Note there will be no exam during finals week.

Exam Accommodations If you are a student who has special exam-taking
arrangements with Student Disabilities Services (SDS), you must contact SDS
to arrange for a time, date and proctor for the exams in this course. We will do
our part by delivering the exams to the SDS office as needed.

If you do not have any arrangements with SDS but believe you should, please
contact them directly (https://disabilities.uchicago.edu) or talk to your
college adviser to open the conversation.

5

https://disabilities.uchicago.edu


To be clear, we, your instructors, are not in a position to judge who needs
what sort of special accommodations; we leave those judgments to professionals.
SDS, along with the college administration, makes these determinations, and
we abide them. Therefore, although you may ask one of us about making an
accommodation for an exam, we will simply refer to your adviser or SDS in such
cases.

Late Work Deadlines in this course are rigid. Since you submit your work
electronically, deadlines are enforced to the minute. Late work will not earn
credit. However, to allow for whatever inevitable deadline-related difficulties
arise for individuals throughout the quarter, we will drop the lowest scoring
homework exercise and the lowest lab exercise from our final calculation. Please
note that no project work will be dropped: only one homework and one lab.

We will occasionally accept late work in the case of special circumstances, when
those circumstances are actually extraordinary.

Academic Honesty In this course, as in all your courses, you must adhere to
college-wide honesty guidelines as set forth at http://college.uchicago.edu/
advising/academic-integrity-student-conduct. The college’s rules have
the final say in all cases. Our own paraphrase is as follows:

1. Never copy work from any other source and submit it as your own.

2. Never allow your work to be copied.

3. Never submit work identical to another student’s.

4. Document all collaboration.

5. Cite your sources.

If you break any of these rules, you will face tough consequences. The minimum
consequence is that the work in question will be considered an undroppable 0.
Beyond that, any student who is determined to have participated in a major
violation of academic honesty will not be allowed to withdraw and will receive
a course grade no higher than a C. Furthermore, if determined to have violated
our expectations of academic honesty, the student will not be allowed to record
a pass/fail grade, and any pass/fail designation the student may have requested
and been granted up to that point shall be retroactively canceled.

Please note that sharing your work publicly (such as posting it to the web)
definitely breaks the second rule. With respect to the third rule, you may
discuss the general strategy of how to solve a particular problem with another
student (in which case, you must document it per the fourth rule), but you may
not share your work directly, and when it comes time to sit down and start
typing, you must do the work by yourself. If you ever have any questions or
concerns about honesty issues, raise them with your instructor, early.

6

http://college.uchicago.edu/advising/academic-integrity-student-conduct
http://college.uchicago.edu/advising/academic-integrity-student-conduct


Advice Writing code that does what it is supposed to do can be enlivening,
joyful, even uplifting. By contrast, fighting for hours with broken code is the
opposite: discouraging, frustrating, and generally miserable. We would like you
to experience more of the former and less of the latter.1 Work methodically.
Start your work well ahead of time. Beyond a certain point, it is not profitable
to be stumped. If you have made no progress in some nontrivial chunk of time,
say, one hour, it is time to stop and change your approach. Use one of our many
support mechanisms to get some assistance. We will help you get going again
when you are stuck.

2020 Jan 10 7.30pm. This is revision 1 of this document.

1In particular, we never want you to come to us and say “I spent six hours fighting with
git.” Do that under no circumstances whatsoever! This campus is full of people who know
how to negotiate version control systems generally, and git specifically. Please seek help from
any one of them.

7


