Homework 5

MPCS 51042 — Python Programming
Due: November 10th 2020, 11:59 pm CT

Initial Setup

Make sure to perform a pull upstream inside your repository. This will grab the distribution code for hwb.
The command is the following:

$ git pull upstream master

Style Guide

For this homework and all future homework assignments, we will follow the style guide used by the un-
dergraduate Python course. It’s located here: https://classes.cs.uchicago.edu/archive/2020/fall/
12100-1/style-guide/index.html

Problem 1: ESArray Class

In JavaScript, the Array datatype (somewhat equivalent to Python’s 1ist) has a number of methods which
list in Python does not have. For this problem, you are to write a subclass of 1ist that provides some of
these methods.

Place this solution inside hw5/esarray/esarray.py

Specifications

The class should be named ESArray and should inherit from the built-in 1ist class.

Note: You are primarily extending the implementation of the 1ist class. By inheriting from list,
you have access to all its methods (including its __init__ method) and ESArray is a list. This is
very important to understand in order for you to implement this class.

The join method should accept a string, s as its only argument (other than self) and return a string
that results from joining each item in the list by the string s.

The every method tests whether all items in the list pass a test implemented by a provided function.
The for_each method executes a provided function function once for each item in the list.

The flatten method returns a new ESArray with all list-like items in the original list flattened. That
is, calling flatten() on a nested list returns a single list with all items appearing the their original
order but with no nesting.

Example Interaction

https://classes.cs.uchicago.edu/archive/2020/fall/12100-1/style-guide/index.html
https://classes.cs.uchicago.edu/archive/2020/fall/12100-1/style-guide/index.html

In [1]: from esarray import ESArray
In [2]: x = ESArray([1, -3, 10, 5])

In [3]: x.join('*x")
Out [3]: '1%%x-3%*x10%*5'

In [4]: x.every(lambda v: v > 0)
Out[4]: False

In [5]: x.every(lambda v: isinstance(v, int))
Out[5]: True

In [6]: x.for_each(print)

In [7]: y = ESArray([[3, 4], [5], 6, [7, [8, [9, 10]11D)

In [8]: y.flatten()
Qut(8]: [3, 4, 5, 6, 7, 8, 9, 10]

Problem 2: Blackjack Game

For Problem 2, you will gain more practice building classes in Python and also give you the opportunity to
build an actual application on your own. However, you will still need to implement a few required classes
and methods.

In this application, you will build a simple version of the card game, Blackjack with a tkinter GUI. The
classes in the game will include: a Card, a Deck, a Hand and a Game. On your own (without my guidance),
you will determine how to put these classes together to build the actual game.

Simplified Blackjack Rules

The rules for Blackjack can be quite extensive (https://en.wikipedia.org/wiki/Blackjack); however,
for this assignment, you are required to implement a simplified rule set.

There will be only two players in the game: the player and the dealer. In our version of Blackjack, The
value of cards two through ten is their pip value (2 through 10). Face cards (Jack, Queen, and King) are all
worth ten. An ace is worth 11 points. Play should use the following process:

1. The player and the dealer should each receive two cards dealt from a deck.
2. The player should play their entire turn before the dealer.

e The player is shown the value of their hand (the sum of the card values) and choose whether to
take a card (hit) or stop at the current value (stand).

e If the player chooses to hit, then if the new value of their hand is greater than 21, the player loses
(busts). If the value is less than 21, the player repeats the process until they stand or bust.

3. If the player did not bust, the dealer plays.

o The dealer will continue to take a card (hit) until the value of their hand is 17 or greater.

https://en.wikipedia.org/wiki/Blackjack

4. If player and dealer both avoided a bust, then the hand with the highest value wins the game. If both
hands are of equal value, then the hand is a tie (push).

Classes Requirements

You are required to implement the following classes and their associated methods and properties. However,
I am not specifying all the attributes you need to declare or how exactly each method is implemented.
You need to determine the appropriate implementations and use all required implementations in your
solution. You may define additional methods and import other modules with no restrictions.

Card class

Implement a Card class, which should hold all information the game cards. A card can be one of four suits
(i.e., Clubs, Diamonds, Spades, or Hearts). In Blackjack, we do not care about the suit for a card; however,
we need to specify the suit in order to load images into the GUI. A card also holds a value between 2-11.
The Card class should have the following attributes/methods/properties:

e Define the following constant class attributes:

CLUBS = "clubs"
DIAMONDS = "diamonds"
HEARTS = "hearts"
SPADES = "spades"

e Define a class attribute called card_images. This class attribute will hold a collection of tk.PhotoImage
objects. You will load this data structure inside the class method load_images. The type of this data
structure is up to you to decide. Come back to this definition when you have a good understanding on
what data structure you want to use.

e Define an __init__(suit,value) method. The constructor must take in a suit which is either:
Card.CLUBS, Card.DIAMONDS, Card.HEARTS, or Card.SPADES. It also takes in a value between 2-
11. Please note that 11 represents an Ace. You should store these inside instance attributes. You may

add additional arguments to help with loading the card image.

e Define a class method called 1load_images. It takes no arguments. This method will load all images
inside the hw5/blackjack/images directory as tk.PhotoImage objects. You will place these objects
inside your card_images data structure. card_images will have 52 tk.PhotoImage objects.

e Define an @property named value. This a getter property that returns the card value. This property
is only a getter and should not have a setter.

e Define an @property named image. This returns the tk.PhotoImage object from the card_images
data structure that represents this Card’s instance. For example, if card = Card(Card.CLUBS,?2)
then card.image returns the tk.PhotoImage object from card_images that is the image from the file
2_of _clubs.gif. Note: An Ace is stored as “1” in the image file name.

Place this solution inside hw5/blackjack/card.py.

Hand class

Implement a Hand class, which should hold a collection of cards. The Hand class must have at least the
following attributes/methods/properties:

e Define an __init__() method. It takes in no arguments but it must define an attribute that will

represent your collection of cards. You must decide the appropriate type for this attribute.

e Define a reset () method. It takes in no arguments and clears your collection of cards.

e Define a add(card) method. It takes in a Card object and adds the card to the collection of cards.
e Define a @property called total. This method returns the sum of the values of the cards in the hand.

e Define a draw(self, canvas, start_x, start_y, canvas_width, canvas_height) method. This
method draws the hand of cards on to the canvas starting at the location specified (i.e., start_x and
start_y). Draw the cards horizontally along the x-axis. The method takes in the canvas_width and
canvas_height but you may not need to use them in your implementation. Make sure to add a small
offset between the cards (e.g. about 5 pixels). You will want to import the import tkinter as tk
package and use the canvas.create_image(...) method to draw the card images on to the canvas.

Place this solution inside hw5/blackjack/hand.py.

Deck class

Implement a Deck class, which should hold a collection of cards and be able to shuffle and deal the cards.
The Deck class must have at least the following attributes/methods/properties:

e Define an __init__() method. It takes in no arguments but it must define an attribute(s) that will
represent the deck of cards. The constructor builds a deck of 52 cards. Each of the 4 suits must have
cards with values 2-9 and 11 (Ace card), and 4 cards with the value 10 (i.e. 10 card, Jack, Queen, and
King). This means each suit has a 13 cards. You should also keep track of all the cards you have dealt
already.

e Define a deal () method. This method removes the top card on the deck and returns it.
e Define a @property called size. This method returns the number of cards left in the deck.

e Define a shuffle method. This method randomly shuffles all the already dealt cards and places them
at the bottom of the deck. You can use the shuffle method from random to help with implementing
this method.

Place this solution inside hw5/blackjack/deck.py.

The GUI

This application is your first exposure to implementing a simple GUI application. The Blackjack game will
have a player (i.e., the user) and dealer (the “computer”). The user will interact with the GUI by pressing
the following keys:

e "h": The user wants to hit on their hand.
e "s": The user wants to stand on their hand.
e "r": The user wants to start a new game (i.e., reset the game.).

The application will look fairly basic and is not required to look fancy in any way. However, you are required
to have the following components:

1. Text showing the player’s total hand count.
2. Text showing the dealer’s total hand count.
3. A game status text indicating the current state of the game.
4. The number of times the player has won.

5. The number of times the dealer has won.

Here’s an image of what my game looks like when we start the application in the terminal (i.e., ipython blackjack.py)

Player Hand Total:14

Game Status:In Progress..
Dealer Wins:0
Player Wins:0

This image was after I hit (“h“) and then I decided to stand (“s”) because my score was at 20. After
standing, the dealer draws their cards up until their total hand is 17 or more. I won the game because the
dealer busted on their last card. Notice my wins went up by one.

Player Hand Total:20

XA TR
o -'-.y.:. ':'
+4

44t ¥y AAy

Dealer Hand Total:23

Game Status:Player WINS... Press 'r' to start a new game
Dealer Wins:0
Player Wins:1

[73%))
T

This image was after I reset the the game (i.e., start a new game of Blackjack).

Player Hand Total:20
X3
vv +*
‘ » 0’0
&
Dealer Hand Total:9
‘¢4 ‘wy
v
*4, AN,
¥l S
Game Status:In Progress..

Dealer Wins:0
Player Wins:1

This image was after I hit “h” and then I busted. The dealer won and notice their wins went up by one.

Player Hand Total:29
RIX I Y
, ' o "o
a A 000 * *
g 44 vV
Dealer Har?fi Total:9 ‘
‘44 ‘we
v
+ 0; ') Ag
Game Status:Dealer WINS...Press 'r' to start a new game

Dealer Wins:1
Player Wins:1

Here are some additional tKinter information you should know about (also look over the discussion
session video, where I describe tKinter):

e You can create text using the canvas.create_text.

game_status = "In Progress..." # the text keyword argument sets the text
text_color = "green" # Use fill to set the text color to green or "red" to set it to red
canvas.create_text(x_loc,y_loc, fill=text_color, font=playerFont,

text=f'Game Status:{game_status}')

e Use canvas.delete(tk.ALL) to clear the entire canvas. I recommend that each time you update the

GUI you clear the screen and redraw everything. It will make the implementation much easier. For
example,

Time to update the GUI
canvas.delete(tk.ALL)
canvas.create_text(...,text=f'Player Hand Total:{...}')

... Draw player hand ...
canvas.create_text(...,text=f'Dealer Hand Total:{...}")
... Draw the Dealer hand ...

#etc

e You can change the font (if you wish) by using the following code:

my_font = font.Font(family='Helvetica', size=15, weight='bold')
canvas.create_text(...,font=my_font, text=f'Dealer Hand Total:{...}')

The blacjack.py file represents the driver for the game. It already contains code for initially setting up
the tkinter and also defines a GameGUI abstract base class that further initializes the tkinter window for
the Blackjack game. You cannot modify the GameGUI class at all.

The Blackjack Class

Implement a BlackJack class that inherits from GameGUI, which implements a simple version of the card
game and displays the game state to the player. The BlackJack class must have at least the following
attributes/methods/properties:

e Define an __init__(window) method. It must initialize the GameGUI superclass with the window
argument. After initializing, its up to you to determine the attributes for the class. Make sure to use
the classes you defined above and to call Card.load_images() to load in the game images. However,
you must keep track of the following:

— The number of times the Player has won.
— The number of times the Dealer has won.
— The game status. The status text in the GUI should should indicate:

* "In Progress...": if a game is in session.
* "Player WINS... Press 'r' to start a new game": if the player wins the game.
* "Dealer WINS... Press 'r' to start a new game": if the dealers wins the game.

x "TIE Game...Press 'r' to start a new game": if the game is a tie.

The color of the text should be green while the game is in progress or red if someone has won.

e Define a reset () method. This method should restart the game. This method is automatically called
whenever the user hits the “r” key. Think of this method as the one that gets called when a new game
wants to be played. This means you must reinitialize and update the GUI based on the starting of a
new game.

e Define a player_hit () method. This method is automatically called whenever the user hits the “h“
key. The user is requesting to perform a hit on their hand. This means that the method must draw a
card from the deck and add it to the player’s hand. After adding the card to the user’s hand:

1. If the player’s hand is over 21 (i.e., a bust) then the player loses. The GUI should indicate that
that dealer has won and increment the dealer’s win amount. A new game only starts when the user
hits “r”; therefore, if the user keeps hitting “h” or “s” then game and GUI remains unchanged.

2. If the player’s hand is under 21, then the game needs to update the GUI. The dealt card should
be shown and the player’s hand total should be updated.

o Define a player_stand() method. This method is automatically called whenever the user hits the
“s“ key. The user is requesting to perform a stand on their hand. This means that the method must
continuously add cards to the dealer’s hand until their hand is greater than or equal to 17. Now, the
game needs to decide who wins:

The dealer loses if their hand is over 21 (i.e., a bust). The GUI should indicate that the player
has won and increments the player’s wins.

— The player wins if it has a higher hand than the dealer. The GUI should indicate that the player
has won and increments the player’s wins.

— The dealer wins if if has a higher hand than the player. The GUI should indicate that the dealer
has won and increments the dealers’s wins.

If both hands are of equal value, then the hand is a tie (push).The GUI should indicate that game
was a tie. No ones wins are incremented.

73RN

A new game only starts when the user hits “r”; therefore, if the user keeps hitting “h” or “s” then
game and GUI remains unchanged.

e The deck should not be reset after each game. When the deck has 13 cards remaining then you must
shuffle the deck.

