
An intuitionisti
 theory of typesPer Martin-L�ofDepartment of Mathemati
s, University of Sto
kholmThe theory of types with whi
h we shall be 
on
erned is intended to bea full s
ale system for formalizing intuitionisti
 mathemati
s as developed, forexample, in the book by Bishop 1967. The language of the theory is ri
her thanthe language of �rst order predi
ate logi
. This makes it possible to strengthenthe axioms for existen
e and disjun
tion. In the 
ase of existen
e, the possibilityof strengthening the usual elimination rule seems �rst to have been indi
atedby Howard 1969, whose proposed axioms are spe
ial 
ases of the existentialelimination rule of the present theory. Furthermore, there is a re
e
tion prin
iplewhi
h links the generation of obje
ts and types and plays somewhat the samerole for the present theory as does the repla
ement axiom for Zermelo-Fraenkelset theory.An earlier, not yet 
on
lusive, attempt at formulating a theory of this kindwas made by S
ott 1970. Also related, although less 
losely, are the type andlogi
 free theories of 
onstru
tions of Kreisel 1962 and 1965 and Goodman 1970.In its �rst version, the present theory was based on the strongly impredi
ativeaxiom that there is a type of all types whatsoever, whi
h is at the same timea type and an obje
t of that type. This axiom had to be abandoned, however,after it was shown to lead to a 
ontradi
tion by Jean Yves Girard. I am verygrateful to him for showing me his paradox. The 
hange that it ne
essitated isso drasti
 that my theory no longer 
ontains intuitionisti
 simple type theory asit originally did. Instead, its proof theoreti
 strength should be 
lose to that ofpredi
ative analysis.1. INFORMAL EXPLANATIONS OF THE BASIC CONCEPTS.1.1. Mathemati
al obje
ts and their types. We shall think of mathemati
alobje
ts or 
onstru
tions. Every mathemati
al obje
t is of a 
ertain kind or type.Better, a mathemati
al obje
t is always given together with its type, that is, itis not just an obje
t, it is an obje
t of a 
ertain type. This may be regardedas a simpler and at the same time more general formulation of Russell's 1903do
trine of types, a

ording to whi
h a type is the range of signi�
an
e of apropositional fun
tion, be
ause in the theory that I am about to des
ribe everypropositional fun
tion will indeed have a type as its domain. A type is de�ned1
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 theory of typesby pres
ribing what we have to do in order to 
onstru
t an obje
t of that type.This is almost verbatim the de�nition of the notion of set given by Bishop 1967.Put di�erently, a type is wellde�ned if we understand (or grasp to use a wordfavoured by Kreisel 1970) what it means to be an obje
t of that type. Thus,for instan
e, N!N is a type not be
ause we know parti
ular number theoreti
fun
tions like the primitive re
ursive ones but be
ause we think we understandthe notion of number theoreti
 fun
tion in general. Note that it is requiredneither that we should be able to generate somehow all obje
ts of a given typenor that we should so to say know them all individually. It is only a question ofunderstanding what it means to be an arbitrary obje
t of the type in question.I shall use the notation a 2 Ato express that a is an obje
t of type A:1.2. Propositions and proofs. A proposition is de�ned by pres
ribing howwe are allowed to prove it. For example971 is a non prime numberis the proposition whi
h we prove by exhibiting two natural numbers greaterthan one and a 
omputation whi
h shows that their produ
t equals 971. In thepresent 
ontext, however, it will not be ne
essary to introdu
e the notion ofproposition as a separate notion be
ause we 
an represent ea
h proposition by a
ertain type, namely, the type of proofs of that proposition. That the proofs of aproposition must form a type is inherent already in the intuitionisti
 explanationsof the logi
al operations when taken together with the do
trine of types. Forexample, the intuitionisti
 notion of impli
ation is explained by saying that aproof of A � B is a fun
tion whi
h to an arbitrary proof of A assigns a proofof B. And, if every fun
tion is to have a type as its domain, this requires thatthe proofs of the proposition A must form a type. To avoid an unwieldy modeof expression and notation, I shall sometimes simply identify a proposition withthe type that represents it. When a type A represents a proposition,a 2 Amay be read alternativelya is a proof of the proposition A:On the formal level, the analogy between formulae and types was dis
overedby Curry and Feys 1958 and further extended by Howard 1969 to whom I amindebted for explaining it to me. In what follows, I shall make use of it in mu
hthe same way as S
ott 1970.
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 theory of types 31.3. Cartesian produ
t of a family of types. Suppose now that A is a typeand that B is a fun
tion, rule or method whi
h to an arbitrary obje
t a of typeA assigns a type B(a). Then the 
artesian produ
t(�x2A)B(x)is a type, namely the type of fun
tions whi
h take an arbitrary obje
t a oftype A into an obje
t of type B(a). Clearly, we may apply an obje
t b of type(�x2A)B(x) to an obje
t of type A, thereby getting an obje
tb(a)of type B(a). The notation b(a1; : : : ; an) will be preferred to b(a1) : : : (an). WhenB(a) represents a proposition for every obje
t a of type A, (�x2A)B(x) repre-sents the universal proposition (8x2A)B(x):A proof of (8x2A)B(x) is a fun
tion whi
h to an arbitrary obje
t a of type Aassigns a proof of B(a).Fun
tions may be introdu
ed by expli
it de�nition. That is, if we, startingfrom a variable x that denotes an arbitrary obje
t of type A, build up a termb[x℄ that denotes an obje
t of type B(x), then we may de�ne a fun
tion denoted(�x)b[x℄ of type (�x2A)B(x) by means of the s
hema(�x)b[x℄(a) = b[a℄:Here b[a℄ denotes the result of substituting the obje
t a of type A for the variablex in the term b[x℄.If B(a) is de�ned to be one and the same type B for every obje
t a of typeA, then (�x2A)B(x) will be abbreviatedA!B:It is the type of fun
tions from A to B. Parentheses are asso
iated to the rightso that A1! : : :!An�1!An abbreviates A1! (: : : (An�1!An) : : :). When Aand B both represent propositions, A!B represents the impli
ationA � B:A proof of A � B is a fun
tion whi
h takes an arbitrary proof of A into a proofof B.1.4. Disjoint union of a family of types. Given a type A and a fun
tion Bwhi
h to an obje
t a of type A assigns a type B(a), we may form the disjointunion (�x2A)B(x)
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 theory of typeswhi
h is the type of pairs (a; b) where a and b are obje
ts of type A and B(a),respe
tively. When B(a) represents a proposition for every obje
t a of type A,(�x2A)B(x) represents the existential proposition(9x2A)B(x)whi
h we prove by exhibiting a pair (a; b) where a is an obje
t of type A and ba proof of the proposition B(a).Let C be a fun
tion whi
h to an arbitrary obje
t of type (�x 2 A)B(x)assigns a type. Given a fun
tion d of type (�x2A)(�y2B(x))C((x; y)) we maythen introdu
e a fun
tion of type (�z2 (�x2A)B(x))C(z) whose value for theargument 
 will be denoted E(
; d) by the s
hemaE((a; b); d) = d(a; b):In parti
ular, we 
an introdu
e the left and right proje
tions p and q of types(�x2A)B(x)!A and (�z2(�x2A)B(x))B(p(z)), respe
tively, by putting(p((a; b)) = a;q((a; b)) = b:A third fun
tion of (�x2A)B(x) is to representthe type of all obje
ts a of type A su
h that B(a),be
ause, from the intuitionisti
 point of view, to give an obje
t a of type Asu
h that B(a) is to give a together with a proof b of the proposition B(a).This interpretation of the notion of su
h that is impli
itly used by Bishop 1967and dis
ussed by Kreisel 1968. However, its expli
it formulation requires usto 
onsider proofs as mathemati
al obje
ts. For example, the type R of realnumbers is de�ned as(�x2N!Q)(�m2N)(�n2N)(jxm+n � xmj � 2�m):Thus, a real number is a pair (a; b) where a is a sequen
e of rational numbersand b is a proof that a satis�es the Cau
hy 
ondition.An example whi
h shows the ne
essity of treating proofs as mathemati
alobje
ts is a�orded by the inverse fun
tion whi
h is not of type R!R but of type(�z2R)(z 6= 0!R), be
ause the de�nition of the inverse 
�1 of a non zero realnumber 
 depends e�e
tively on the proof that 
 6= 0. A similar phenomenono

urs in the intuitionisti
 theory of ordinals of the se
ond number 
lass (seeBrouwer 1918) where the subtra
tion fun
tion is not of type O!O!O but oftype (�x2O)(�y2O)(x<y!O), be
ause the de�nition of the di�eren
e b� aof two ordinals a and b depends e�e
tively on the proof that a<b.In the spe
ial 
ase when B(a) is de�ned to be one and the same type B forevery obje
t a of type A, (�x2A)B(x) is abbreviatedA�B:



An intuitionisti
 theory of types 5It is the 
artesian produ
t of the two types A and B. If A and B both representpropositions, then A�B represents their 
onjun
tionA&B:1.5. Disjoint union of two types. If A and B are types, so is the disjointunion A+Bwhi
h is the type of obje
ts of the form i(a) with a of type A or j(b) with bof type B. Here i and j denote the 
anoni
al inje
tions. When A and B bothrepresent propositions, A+B represents their disjun
tionA _ B:Let C be a fun
tion whi
h to an arbitrary obje
t of type A + B assigns atype, and suppose that d and e are fun
tions of types (�x2A)C(i(x)) and (�y2B)C(j(y)), respe
tively. Then we may de�ne a fun
tion of type (�z2A+B)C(z)whose value for the argument 
 will be denoted D(
; d; e) by the s
hema(D(i(a); d; e) = d(a);D(j(b); d; e) = e(b):1.6. Finite types. For ea
h nonnegative integer n we introdu
e a type Nnwith pre
isely the n obje
ts 1; 2; : : : ; n. A
tually, it would suÆ
e to introdu
eN0 and N1 be
ause, for n greater than one, we 
an de�ne Nn to be the union ofN1 with itself n times.If C is a fun
tion whi
h to an arbitrary obje
t of type Nn assigns a typeand 
1, . . . , 
n are obje
ts of types C(1), . . . , C(n), respe
tively, then we mayde�ne a fun
tion of type (�x2Nn)C(x) whose value for the argument 
 will bedenoted Rn(
; 
1; : : : ; 
n) by the s
hema8>><>>:Rn(1; 
1; : : : ; 
n) = 
1;...Rn(n; 
1; : : : ; 
n) = 
n:In parti
ular, N0 is the empty type � whi
h also represents the logi
al 
onstantfalsehood ?, and the fun
tion (�x)R0(x) of type (�x 2 N0)C(x) is the emptyfun
tion. Similarly, the one element type N1 is used to represent the logi
al
onstant truth >.1.7. Natural numbers. N is a type, namely, the type of natural numbers. 0is an obje
t of type N and, if n is an obje
t of type N , so is its su

essor s(n).These are the �rst two Peano axioms.Let C be a fun
tion whi
h to an arbitrary natural number assigns a type.Then, given an obje
t d of type C(0) and a fun
tion e of type (�x2N)(C(x)!



6 An intuitionisti
 theory of typesC(s(x))), we may introdu
e a fun
tion of type (�x 2N)C(x) whose value forthe argument n will be denoted R(n; d; e) by the re
ursion s
hema(R(0; d; e) = d;R(s(n); d; e) = e(n;R(n; d; e)):If C(n) represents a proposition for every natural number n, then (�x)R(x; d; e)is the proof of the universal proposition (8x2N)C(x) whi
h we get by applyingthe prin
iple of mathemati
al indu
tion to the proof d of C(0) and the proof eof (8x2N) (C(x)!C(s(x)))The type N is just the prime example of a type introdu
ed by an ordinaryindu
tive de�nition. However, it seems preferable to treat this spe
ial 
ase ratherthan to give the ne
essarily mu
h more 
ompli
ated general formulation whi
hwould in
lude (�x2A)B(x), A+B, Nn and N as spe
ial 
ases. See Martin-L�of1971 for a general formulation of indu
tive de�nitions in the language of �rstorder predi
ate logi
.1.8. Re
e
tion prin
iple. The abstra
tions des
ribed so far still do not allowus to de�ne enough types and type valued fun
tions. For example, we want tobe able to de�ne equality between natural numbers by the s
hema8>>>><>>>>:E(0; 0) = >;E(s(m); 0) = ?;E(0; s(n)) = ?;E(s(m); s(n)) = E(m;n);whi
h will give us in parti
ular the third and fourth Peano axioms. This 
an
learly be done by re
ursion if only the propositions alias types ? and > wereobje
ts of some type V . Also, we want to be able to de�ne trans�nite types like(�x2N)F (x) where (F (0) = N;F (s(n)) = F (n)!N:Again, this o�ers no diÆ
ulty if only there were a type V su
h that N is anobje
t of type V and A! B is an obje
t of type V as soon as A and B areobje
ts of type V .Guided by these heuristi
 
onsiderations, we introdu
e a type V whi
h will be
alled a universe and whose obje
ts are to be types, together with the re
e
tionprin
iple whi
h roughly speaking says that whatever we are used to doing withtypes 
an be done inside the universe V . More pre
isely, this means that V is
losed under the following indu
tive 
lauses. N0, N1, . . . and N are obje
ts oftype V . If A and B are obje
ts of type V , then so is A + B. If A is an obje
tof type V and B is a fun
tion whi
h to an arbitrary obje
t of type A assigns anobje
t of type V , then (�x2A)B(x) and (�x2A)B(x) are obje
ts of type V .Note, however, that the re
e
tion prin
iple does not justify the axiom that V is
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 theory of types 7an obje
t of type V whi
h Girard 1972 has shown to be 
ontradi
tory, be
ausethen V would so to say have to have been there already before we introdu
ed it.It is not natural although possible to add the prin
iple of (trans�nite) indu
-tion over V , expressing the idea that V is the least type whi
h is 
losed withrespe
t to the above indu
tive 
lauses, be
ause we want to keep our universe Vopen so as to be free to throw new types into it or require it to be 
losed withrespe
t to new type forming operations. For example, we may want to introdu
ethe type O of ordinals of the se
ond number 
lass or the operation whi
h to atype A assigns the type W (A) of wellfounded trees over A (see Tait 1968, S
ott1970 and Howard 1971).Borrowing terminology from 
ategory theory, a type whi
h is an obje
t ofV is said to be small whereas V itself and all types whi
h are derived from itare large. Thus the universe V is the type of small types. With this distin
tionbetween small and large, the present theory, despite its limited proof theoreti
alstrength, is adequate for the formulation of the basi
 notions and 
onstru
tionsof 
ategory theory. However, it does not legitimatize the 
onstru
tion of the
ategory of all 
ategories whatsoever whi
h in view of Girard's paradox seemshighly dubious.The use of the re
e
tion prin
iple in the present theory, on the one hand, toover
ome the unnatural limitation to �nite types and, on the the other hand, tomake possible the formalization of 
ategory theory should be 
ompared to theuse of the quite di�erent re
e
tion prin
iple in the equally di�erent language ofset theory for the same purposes. The idea of using the set theoreti
al re
e
tionprin
iple for the formalization of 
ategory theory is due to Kreisel 1965 and hasbeen elaborated by Feferman 1969.1.9. Girard's paradox. Suppose that we think of V not as the type of smalltypes but as the type of all types whatsoever. Then, being a type, namely, thetype of types, V is itself an obje
t of type V , in short,V 2 V;and a type is the same as an obje
t of type V . The following paradox whi
h is amodi�
ation of the one dis
overed by Girard 1972 (whi
h, in turn, resembles theBurali-Forti paradox) shows that the idea of the type of all types whatsoever isin
onsistent.De�ne an ordering without in�nite des
ending 
hains (Girard 1972 introdu
esinstead what he 
alls torsion free orderings) to be a type A together with a binaryrelation < on A su
h that the propositionsP (A;<) = (�x2A)(�y2A)(x<y ! y<z ! x<z)and Q(A;<) = (�f 2N!A)( (�n2N)(f(n + 1)<f(n))!? );whi
h express that < is transitive and free from in�nite des
ending 
hains, bothhold. Note that an ordering without des
ending 
hains is ne
essarily irre
exive,
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 theory of typesbe
ause, if a<a, then : : : < a< : : : < a< a is an in�nite des
ending 
hain andwe get a 
ontradi
tion.Remembering the representation of propositions as types and the interpreta-tion of the notion of su
h that,U = (�A2V )(� <2A!A!V )(P (A;<)�Q(A;<))is the type of all orderings without in�nite des
ending 
hains. On U we de�ne abinary relation <U by putting(A;<A; pA; qA)<U (B;<B ; pB ; qB) = (�f 2A!B)(�b2B)((�x2A)(�y2A)(x <A y!f(x) <B f(y)) � (�x2A)(f(x) <B b));that is, one ordering of the kind that we are 
onsidering is de�ned to be less thananother if there exists an order preserving map from the �rst to the se
ond andan element of the se
ond ordering whi
h dominates the range of this map.The ordering <U is transitive. Suppose namely that(A;<A; pA; qA)<U (B;<B ; pB ; qB)<U (C;<C ; pC ; qC);that is, that there are order preserving maps f 2 A! B and g 2 B ! C andelements b 2 B and 
 2 C that dominate their respe
tive ranges. Then the
omposition of f and g is an order preserving map from A to C whose range isdominated by 
 so that(A;<A; pA; qA)<U (C;<C ; pC ; qC):We have now 
onstru
ted a proof pU 2P (U;<U ).The ordering <U has no in�nite des
ending 
hains. Suppose namely that(An+1; <n+1; pn+1; qn+1)<U (An; <n; pn; qn); n = 0; 1; : : : ;and let fn be the order preserving fun
tion that maps An+1 into An and an theobje
t of type An that dominates its range. Then: : : <0 f0(f1(: : : fn(an+1) : : :)) <0 : : : <0 f0(f1(a2)) <0 f0(a1) <0 a0so that we get an in�nite des
ending 
hain in A0 
ontrary to the assumptionthat <0 is an ordering without su
h 
hains. We have now 
onstru
ted a proofqU 2Q(U;<U ).From U 2 V , <U 2 U ! U ! V , pU 2 P (U;<U) and qU 2Q(U;<U ) we 
an
on
lude (U;<U ; pU ; qU ) 2 U:The next step is to show that this is a maximal element of U with respe
t to theordering <U , that is, that(A;<; p; q)<U (U;<U ; pU ; qU )
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 theory of types 9for all (A;<; p; q) 2 U:To this end, we let f be the fun
tion whi
h takes an obje
t a of type A into thesegment of A determined by a, that is,f(a) = (Aa; <a; pa; qa)where, remembering the interpretation of su
h that,Aa = (�x2A)(x < a);<a is the restri
tion of < to A and pa and qa are the obvious proofs that <a istransitive and free from in�nite des
ending 
hains. We have to show that f isorder preserving and that its range has a dominating element. Suppose a < b.Then f(a)<U f(b)be
ause the inje
tion of Aa in to Ab is order preserving and its range is dominatedby the pair of type Ab whi
h 
onsists of a and the proof of a < b. As the elementof type U whi
h is to dominate the range of f we 
an take (A;<; p; q) itself.Indeed, if a is an arbitrary obje
t of type A, thenf(a) = (Aa; <a; pa; qa)<U (A;<; p; q)be
ause the inje
tion of Aa into A is order preserving and its range is dominatedby a.We have now shown that (U;<U ; pU ; qU ) is a maximal element of U withrespe
t to the ordering <U . But (U;<U ; pU ; qU ) is itself an obje
t of type U andhen
e (U;<U ; pU ; qU )<U (U;<U ; pU ; qU ):This, however, is impossible, be
ause we have shown <U to be an orderingwithout in�nite des
ending 
hains and, as remarked above, su
h an ordering isne
essarily irre
exive.
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 theory of types2. FORMALIZATION OF AN INTUITIONISTIC THEORY OFTYPES.2.1. Notational 
onventions. There is no need to give a list of all theformal symbols. SuÆ
e it to say that it should 
ontain all the symbols that areused in the following ex
ept the square bra
kets whi
h will be reserved for thesubstitution operation. Thus, b[x℄ denotes an expression in whi
h there may besome free o

urren
es of the variable x, and b[a℄ denotes the result of substitutingthe expression a for all free o

urren
es of the variable x in b[x℄. Free and boundvariables are de�ned by stipulating that all free o

urren
es of x in b[x℄ be
omebound in (�x)b[x℄ and, similarly, that all free o

urren
es of x in B[x℄ be
omebound in (�x2A)B[x℄ and (�x2A)B[x℄.By a simultaneous indu
tion, we shall generate 
ertain symboli
 expressions
alled types and, for every type, 
ertain other expressions 
alled the terms ofthat type. The rules of type and term formation are su
h that, when the for-mal symbols are given their abstra
t interpretation as des
ribed in the previous
hapter, it be
omes 
lear that a type A denotes an abstra
t type and that a terma of type A denotes an abstra
t obje
t of the type denoted by A. I shall use thenotation a2A to express that a is a term of type A.There will be variables ea
h of whi
h has a unique type asso
iated with it,and a term or type will always depend on a 
ertain �nite number of variables.The notion of dependen
e is de�ned indu
tively by stipulating that a term ortype depends on all its free variables as well as on all variables on whi
h thetypes of its free variables depend. Consequently, a term or type is 
losed ifand only if it depends on no variables at all. There will be variable restri
tionsprohibiting us to bind a variable in a term or type if there is a free variable inthe said term or type whose type depends on the variable in question. Thesevariable restri
tions 
ontain as spe
ial 
ases those stated by Gentzen for hissystem of natural dedu
tion for �rst order logi
. To avoid expli
it mention ofthe variable restri
tions, it will be ta
itly assumed that a term whi
h is denotedby b[x1; : : : ; xn℄ 
ontains no free variable distin
t from xm+1; : : : ; xn whose typedepends on xm; m = 1; : : : ; n. The same notational 
onvention will be usedfor types. Thus, for instan
e, when saying that b[x℄ is a term of type B[x℄, it ista
itly assumed that there is no free variable in b[x℄ or B[x℄ whose type dependson x.2.2. Types.2.2.1. If P is an n-ary type 
onstant with arguments of types A1; : : : ;An[x1; : : : ; xn�1℄ and a1; : : : ; an are terms of types A1; . . . , An[a1; : : : ; an�1℄,respe
tively, then P (a1; : : : ; an) is a type. Here, for m = 1; : : : ; n; the variablexm is of the type Am[x1; : : : ; xm�1℄ whi
h must not depend on any other variablesthan the expli
itly exhibited x1; : : : ; xm�1. The type 
onstants 
orrespond tothe predi
ate 
onstants in ordinary �rst order predi
ate logi
.2.2.2. If x is a variable of type A and B[x℄ is a type, then (�x2A)B[x℄ is atype. When B does not 
ontain x free, (�x2A)B is abbreviated A!B.
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 theory of types 112.2.3. If x is a variable of type A and B[x℄ is a type, then (�x2A)B[x℄ is atype. When B does not 
ontain x free, (�x2A)B is abbreviated A�B.2.2.4. If A and B are types, then A+B is a type.2.2.5. V is a type.2.2.6. A term of type V is a small type. This is the 
lause whi
h links thegeneration of the types with the generation of the terms.A type whi
h is not small is large. Thus, for instan
e, V is a large type. Atype is large if and only if it 
ontains an o
urren
e of V or a type 
onstant P ,and hen
e it 
an be me
hani
ally de
ided whether a type is small or large.2.3. Terms. Ea
h rule of term formation will be 
lassi�ed �a la Gentzen 1934as an introdu
tion or elimination rule asso
iated with one of the basi
 types ortype forming operations.2.3.1. Variables. If x is a variable of type A, then x is a term of type A.We are not allowed to introdu
e a variable x of type A unless x is distin
t fromall the variables on whi
h the type A depends. Also, as remarked earlier, thetype of a free variable must always be uniquely asso
iated with the variable inquestion. We shall not 
are about the naming of bound variables.2.3.2. Constants. If a is an obje
t 
onstant of type A, then a is a term of typeA. The type of an obje
t 
onstant must always be 
losed. The obje
t 
onstants
orrespond, on the one hand, to the individual 
onstants and fun
tion symbolsin ordinary �rst order predi
ate logi
 and, on the other hand, to the axioms ofa �rst order theory.2.3.3. �-introdu
tion or �-abstra
tion. If x is a variable of type A and b[x℄is a term of type B[x℄, then (�x)b[x℄ is a term of type (�x2A)B[x℄.2.3.4. �-elimination or appli
ation. If a and b are terms of types A and(�x2A)B[x℄, respe
tively, then b(a) is a term of type B[a℄.2.3.5. �-introdu
tion or pairing. Let x be a variable of type A and B[x℄ atype. Then, if a and b are terms of types A and B[a℄, respe
tively, (a; b) is aterm of type (�x2A)B[x℄.2.3.6. �-elimination. Let x, y and z be variables of type A, B[x℄ and(�x 2 A)B[x℄, respe
tively, and let C[z℄ be a type. Then, if 
 and d[x; y℄ areterms of types (�x2A)B[x℄ and C[(x; y)℄, respe
tively, E(
; (�x)(�y)d[x; y℄) isa term of type C[
℄.2.3.7. +-introdu
tion or inje
tion. If a is a term of type A, then i(a) is aterm of type A+B. Similarly, if b is a term of type B, then j(b) is term of typeA+B.2.3.8. +-elimination or de�nition by 
ases. Let x, y and z be variablesof types A, B and A + B, respe
tively, and let C[z℄ be a type. Then, if
, d[x℄ and e[y℄ are terms of types A + B, C[i(x)℄ and C[j(y)℄, respe
tively,D(
; (�x)d[x℄; (�y)e[y℄) is a term of type C[
℄.2.3.9. Nn-introdu
tion. 1, . . . , n are terms of type Nn.2.3.10. Nn-elimination. Let z be a variable of type Nn and C[z℄ a type.Then, if 
, 
1, . . . , 
n are terms of types Nn, C[1℄, . . . , C[n℄, respe
tively,Rn(
; 
1; : : : ; 
n) is a term of type C[
℄.
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 theory of types2.3.11. N -introdu
tion or Peano's �rst and se
ond axioms. 0 is term of typeN . If a is a term of type N , so is s(a). A term of type N whi
h has the forms(s(: : : s(0) : : :)) is 
alled a numeral.2.3.12. N -elimination or re
ursion. Let x and y be variables of types Nand C[x℄, respe
tively. Then, if 
, d and e[x; y℄ are terms of types N , C[0℄ andC[s(x)℄, respe
tively, R(
; d; (�x)(�y)e[x; y℄) is a term of type C[
℄.2.3.13. V -introdu
tion or the re
e
tion prin
iple. N0, N1, . . . and N areterms of type V . If A and B are terms of type V , then so is A + B. If A andB[x℄ are terms of type V , x being a variable of type A, then (�x2A)B[x℄ and(�x 2A)B[x℄ are terms of type V . N0 and N1 are alternatively denoted by ?and >, respe
tively.2.3.14. Type 
onversion. This is a stru
tural rule, that is, a rule whi
h isto be 
onsidered neither as an introdu
tion rule nor as an elimination rule. If ais a term of type A whi
h 
onverts to a type B, then a is a term of type B. Itremains for us to de�ne the notion of 
onversion. Before doing this, however, itwill be 
onvenient to represent the rules of term formation by s
hemata similarto those used by Gentzen 1934 in his system of natural dedu
tion for �rst orderpredi
ate logi
.�-introdu
tion x 2 Ab[x℄ 2 B[x℄(�x)b[x℄ 2 (�x2A)B[x℄�-elimination b 2 (�x2A)B[x℄ a 2 Ab(a) 2 B[a℄�-introdu
tion a 2 A b 2 B[a℄(a; b) 2 (�x2A)B[x℄�-elimination 
 2 (�x2A)B[x℄ x 2 A y 2 B[x℄d[x; y℄ 2 C[(x; y)℄E(
; (�x)(�y)d[x; y℄) 2 C[
℄+-introdu
tion a 2 Ai(a) 2 A+B b 2 Bj(b) 2 A+B+-elimination 
 2 A+B x 2 Ad[x℄ 2 C[i(x)℄ y 2 Be[y℄ 2 C[j(y)℄D(
; (�x)d[x℄; (�y)e[y℄) 2 C[
℄Nn-introdu
tion 1 2 Nn : : : n 2 Nn
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 2 Nn 
1 2 C[1℄ : : : 
n 2 C[n℄Rn(
; 
1; : : : ; 
n) 2 C[
℄N -introdu
tion 0 2 N a 2 Ns(a) 2 NN -elimination 
 2 N d 2 C[0℄ x 2 N y 2 C[x℄e[x; y℄ 2 C[s(x)℄R(
; d; (�x)(�y)e[x; y℄) 2 C[
℄V -introdu
tion N0 2 V N1 2 V : : : N 2 VA 2 V B 2 VA+B 2 V A 2 V x 2 AB[x℄ 2 V(�x2A)B[x℄ 2 V A 2 V x 2 AB[x℄ 2 V(�x2A)B[x℄ 2 VType 
onversion a 2 Aa 2 B A 
onv B2.4. Contra
tion, redu
tion and 
onversion. We shall be 
on
erned with
ontra
tion, redu
tion and 
onversion of terms as well as types. However, inorder to show that the terms and types are 
losed under redu
tion, we need a
ertain 
ombinatorial property, the so-
alled Chur
h-Rosser property, whi
h willbe proved for a 
lass of in general meaningless formal expressions whi
h is wideenough to in
lude both the terms and the types.2.4.1. De�nition of formal expressions.2.4.1.1. If a1; . . . , an are expressions and P is an n-ary type 
onstant, thenP (a1; : : : ; an) is an expression.2.4.1.2. If x is a variable and A and B[x℄ are expressions, then (�x2A)B[x℄and (�x2A)B[x℄ are expressions.2.4.1.3. If A and B are expressions, then so is A+B.2.4.1.4. N0, N1, . . . , N and V are expressions.2.4.1.5. Variables and obje
t 
onstants are expressions.2.4.1.6. If b[x℄ is an expression, then so is (�x)b[x℄.2.4.1.7. If a and b are expressions, then so is b(a).2.4.1.8. If a and b are expressions, then so is (a; b).2.4.1.9. If 
 and d[x; y℄ are expressions, then so is E(
; (�x)(�y)d[x; y℄).2.4.1.10. If a and b are expressions, then so are i(a) and j(b).2.4.1.11. If 
, d[x℄ and e[y℄ are expressions, then so is D(
; (�x)d[x℄; (�y)e[y℄).2.4.1.12. 1, . . . , n are expressions.2.4.1.13. If 
, 
1, . . . , 
n are expressions, then so is Rn(
; 
1; : : : ; 
n).2.4.1.14. 0 is an expression, and, if a is an expression, then so is s(a).2.4.1.15. If 
, d and e[x; y℄ are expressions, then so is R(
; d; (�x)(�y)e[x; y℄).
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 theory of types2.4.2. Rules of 
ontra
tion.(�x)b[x℄(a) 
ontr b[a℄;E((a; b); (�x)(�y)d[x; y℄) 
ontr d[a; b℄;(D(i(a); (�x)d[x℄; (�y)e[y℄)D(j(b); (�x)d[x℄; (�y)e[y℄) 
ontr
ontr d[a℄;e[b℄;8><>:Rn(1; 
1; : : : ; 
n)...Rn(n; 
1; : : : ; 
n) 
ontr
ontr 
1;
n;(R(0; d; (�x)(�y)e[x; y℄)R(s(a); d; (�x)(�y)e[x; y℄) 
ontr
ontr d;e[a;R(a; d; (�x)(�y)e[x; y℄)℄:An expression whi
h has the form of the left hand member of one of the rulesof 
ontra
tion is 
alled a redex and the 
orresponding right hand member is its
ontra
tum. An expression a redu
es to an expression b, abbreviated a red b, if b
an be obtained from a by repeated 
ontra
tions of parts of the expression a, andan expression is irredu
ible or normal if it 
annot be further redu
ed. Finally,an expression a is said to 
onvert into an expression b, abbreviated a 
onv b, ifthere is an expression 
 su
h that both a red 
 and b red 
.2.4.3. Chur
h-Rosser property. If a red b and a red 
, then there is anexpression d su
h that b red d and 
 red d.The proof given below is an adaptation of a proof for the type free 
ombinator
al
ulus shown to me by William Tait. The idea is to introdu
e a suitablemeasure of the length of the sequen
e of 
ontra
tions whi
h redu
es an expressiona to an expression b. We shall say that a redu
es in one step and write a red1b if b is obtained by 
ontra
ting some, possibly all or none, of the redexes in a,starting from within and pro
eeding outwards. (Of 
ourse, even if we 
ontra
tall redexes that o

ur in a 
ertain expression, we do not ne
essarily obtain anormal one, be
ause new redexes may arise when the old ones are 
ontra
ted.)Redu
tion in n steps is de�ned indu
tively by putting a red0 a and letting aredn+1 
 mean that a redn b and b red1 
 for some b. Clearly, a red b if andonly if a redn b for some n. (Indeed, n 
an be taken to be the total number of
ontra
tions that are 
arried out when redu
ing a to b.)2.4.3.1. Lemma. If a red1 
 and b[x℄ red1 d[x℄ then b[a℄ red1 d[
℄.This is obvious from the de�nition of one step redu
tion.2.4.3.2. Lemma. If a red1 b and a red1 
, then there is an expression d su
hthat b red1 d and 
 red1 d.The proof is by indu
tion on the 
onstru
tion of the expression a. All 
asesin whi
h a does not have the form of a redex are handled immediately by meansof the indu
tion hypothesis. Equally trivial are the 
ases when a is a redex whi
his 
ontra
ted neither in b nor in 
. There remain the 
ases when a is a redexwhi
h is 
ontra
ted either in one of b and 
, say 
, or in both.
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 theory of types 152.4.3.2.1. a has the form (�x)a2[x℄(a1). Then b has the form (�x)b2[x℄(b1)or b2[b1℄ and 
 has the form 
2[
1℄ wherea1 red1 b1; a2[x℄ red1 b2[x℄;a1 red1 
1; a2[x℄ red1 
2[x℄:By indu
tion hypothesis, we 
an �nd d1 and d2[x℄ su
h thatb1 red1 d1; b2[x℄ red1 d2[x℄;
1 red1 d1; 
2[x℄ red1 d2[x℄:But then (�x)b2[x℄(b1) red1 d2[d1℄ by the de�nition of one step redu
tion andb2[b1℄ and 
2[
1℄ red1 d2[d1℄ by the previous lemma so that d 
an be taken to bed2[d1℄.2.4.3.2.2. a has the form E((a1; a2); (�x)(�y)a3[x; y℄). Then b has the formE((b1; b2); (�x)(�y)b3[x; y℄) or b3[b1; b2℄ and 
 has the form 
3[
1; 
2℄ wherea1 red1 b1; a2 red1 b2; a3[x; y℄ red1 b3[x; y℄;a1 red1 
1; a2 red1 
2; a3[x; y℄ red1 
3[x; y℄:By indu
tion hypothesis, we 
an �nd d1, d2 and d3[x; y℄ su
h thatb1 red1 d1; b2 red1 d2; b3[x; y℄ red1 d3[x; y℄;
1 red1 d1; 
2 red1 d2; 
3[x; y℄ red1 d3[x; y℄:But then E((b1; b2); (�x)(�y)b3 [x; y℄) red1 d3[d1; d2℄ by the de�nition of one stepredu
tion and b3[b1; b2℄ and 
3[
1; 
2℄ red1 d3[d1; d2℄ by the previous lemma sothat d 
an be taken to be d3[d1; d2℄.2.4.3.2.3. a has the form D(i(a1); (�x)a2[x℄; (�y)a3[y℄). Then b has the formD(i(b1); (�x)b2[x℄; (�y)b3[y℄) or b2[b1℄ and 
 has the form 
2[
1℄ wherea1 red1 b1; a2[x℄ red1 b2[x℄; a3[y℄ red1 b3[y℄;a1 red1 
1; a2[x℄ red1 
2[x℄:By indu
tion hypothesis, we 
an �nd d1 and d2[x℄ su
h thatb1 red1 d1; b2[x℄ red1 d2[x℄;
1 red1 d1; 
2[x℄ red1 d2[x℄:But then D(i(b1); (�x)b2[x℄; (�y)b3[y℄) red1 d2[d1℄ by the de�nition of one stepredu
tion and b2[b1℄ and 
2[
1℄ red1 d2[d1℄ by the previous lemma so that d 
anbe taken to be d2[d1℄.2.4.3.2.4. a has the form D(j(a1); (�x)a2[x℄; (�y)a3[y℄). This 
ase is 
om-pletely symmetri
 to the previous one.
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 theory of types2.4.3.2.5. a has the form Rn(m; a1; : : : ; an). Then b has the form Rn(m; b1;: : : ; bn) or bm and 
 has the form 
m wheream red1 bm;am red1 
m:By indu
tion hypothesis, we 
an �nd dm su
h thatbm red1 dm;
m red1 dm:But then Rn(m; b1; : : : ; bn) red1 dm by the de�nition of one step redu
tion andbm and 
m red1 dm so that d 
an be taken to be dm.2.4.3.2.6. a has the form R(0; a2; (�x)(�y)a3[x; y℄). Then b has the formR(0; b2; (�x)(�y)b3[x; y℄) or b2 and 
 has the form 
2 wherea2 red1 b2; a3[x; y℄ red1 b3[x; y℄;a2 red1 
2:By indu
tion hypothesis, we 
an �nd d2 su
h thatb2 red1 d2;
2 red1 d2:But then R(0; b2; (�x)(�y)b3[x; y℄) red1 d2 by the de�nition of one step redu
tionand b2 and 
2 red1 d2 so that d 
an be taken to be d2.2.4.3.2.7. a has the form R(s(a1); a2; (�x)(�y)a3[x; y℄). Then b has theform R(s(b1); b2; (�x)(�y)b3[x; y℄) or b3[b1; R(b1; b2; (�x)(�y)b3[x; y℄)℄ and 
 hasthe form 
3[
1; R(
1; 
2; (�x)(�y)
3[x; y℄)℄ wherea1 red1 b1; a2 red1 b2; a3[x; y℄ red1 b3[x; y℄;a1 red1 
1; a2 red1 
2; a3[x; y℄ red1 
3[x; y℄:By indu
tion hypothesis, we 
an �nd d1, d2 and d3[x; y℄ su
h thatb1 red1 d1; b2 red1 d2; b3[x; y℄ red1 d3[x; y℄;
1 red1 d1; 
2 red1 d2; 
3[x; y℄ red1 d3[x; y℄:Let d be the expression d3[d1; R(d1; d2; (�x)(�y)d3 [x; y℄)℄. Then R(s(b1); b2; (�x)(�y)b3[x; y℄) red1 d andR(b1; b2; (�x)(�y)b3[x; y℄) red1 R(d1; d2; (�x)(�y)d3 [x; y℄)and R(
1; 
2; (�x)(�y)
3 [x; y℄) red1 R(d1; d2; (�x)(�y)d3[x; y℄)
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 theory of types 17by the de�nition of one step redu
tion so that b3[b1; R(b1; b2; (�x)(�y)b3[x; y℄)℄and 
3[
1; R(
1; 
2; (�x)(�y)
3 [x; y℄)℄ red1 d by the previous lemma as desired.2.4.3.3. Lemma. If a redm b and a redn 
 then there is an expression d su
hthat b redn d and 
 redm d.This folllows by mn appli
ations of the previous lemma. The proof of theChur
h-Rosser property is now 
omplete.2.4.4. Corollary. The relation a 
onv b is an equivalen
e relation.The re
exivity and symmetry are both obvious from the de�nition. To provethe transitivity, suppose that a 
onv b and b 
onv 
. By the de�nition of the
onvertibility relation, this means that there are expressions d and e su
h thata red d, b red d, b red e and 
 red e. Be
ause of the Chur
h-Rosser property, we
an �nd an expression f su
h that d red f and e red f . Sin
e the redu
ibilityrelation is transitive, a red f and 
 red f so that a 
onv 
 as desired.It is a 
onsequen
e of the transitivity of the 
onvertibility relation that a se-quen
e of su

essive appli
ations of the rule of type 
onversion 
an be 
ondensedinto one appli
ation of the same rule. Thus, whenever 
onvenient, we 
an as-sume that there is at most one (or even pre
isely one) appli
ation of the rule oftype 
onversion between two su

essive appli
ations of the non stru
tural rulesof term formation.2.4.5. Uniqueness of normal forms. An expression 
an 
onvert into at mostone normal expression.First note that, be
ause of the Chur
h-Rosser property, an expression whi
h
onverts into a normal expression must ne
essarily redu
e to it. So suppose thata red b and a red 
 where a is an arbitrary expression and b and 
 are bothnormal. By the Chur
h-Rosser property, there is an expression d su
h that bred d and 
 red d. Sin
e b and 
 are both normal, they must be equal to d andhen
e equal to ea
h other. Remember that equality means synta
ti
al equalitynegle
ting di�eren
es in the naming of bound variables.2.4.6. De�nitional equality. Two types A and B are said to be de�nitionallyequal provided A 
onv B. Also a term a of type A is de�nitionally equal to aterm b of type B if both a 
onv b and A 
onv B. Note that, be
ause of the ruleof type 
onversion, two terms are of de�nitionally equal types if and only if theyare of the same type. Two de�nitionally equal types denote the same abstra
ttype, and, similarly, two de�nitionally equal terms denote the same obje
t of theabstra
t type denoted by their types. Thus, de�nitional equality is a relationbetween linguisti
 expressions and not between the abstra
t entities whi
h theydenote (and whi
h are the same). This explains why the rule of type 
onversion,unlike all the other rules of term formation, has no 
ounterpart on the informallevel. (It is super
uous to say that if a is an obje
t of type A and the types Aand B are the same, then a is an obje
t of type B.)Be
ause of the representation of propositions as types and hen
e of proofsas mathemati
al obje
ts, the relation of de�nitional equality just introdu
edembra
es at the same time Tait's 1967 notion of de�nitional equality betweenthe terms of G�odel's 1958 theory of primitive re
ursive fun
tionals of �nite type
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 theory of typesand the notion of de�nitional equality between derivations representing proofsthat I have proposed earlier (see Prawitz 1971).2.4.7. Theorem. The terms of a given type are 
losed under redu
tion.This means that, if a term of a 
ertain type redu
es to an expression, thenthis expression is a
tually a term of the same type. Clearly, it suÆ
es to provethis when the expression is obtained from the given term by one step redu
tion.The proof is by indu
tion on the derivation of the given term. Several 
ases haveto be distinguished.2.4.7.1. The derivation of the given term has the formx 2 A...b[x℄ 2 B[x℄(�x)b[x℄ 2 (�x2A)B[x℄and (�x)b[x℄ red1 (�x)d[x℄ be
ause b[x℄ red1 d[x℄. By indu
tion hypothesis,d[x℄ 2 B[x℄ under the assumption x 2 A, and hen
e (�x)d[x℄ 2 (�x 2 A)B[x℄follows by �-introdu
tion.2.4.7.2. The derivation of the given term has the form...b 2 (�x2A)B[x℄ ...a 2 Ab(a) 2 B[a℄and b(a) red1 d(
) be
ause a red1 
 and b red1 d. By indu
tion hypothesis, 
2Aand d 2 (�x 2 A)B[x℄, from whi
h d(
) 2 B[
℄ follows by �-elimination. Type
onversion then yields d[
℄2B[a℄ as desired.2.4.7.3. The derivation of the given term has the formx 2 C...b[x℄ 2 D[x℄(�x)b[x℄ 2 (�x2C)D[x℄ ...(�x)b[x℄ 2 (�x2A)B[x℄ a 2 A(�x)b[x℄(a) 2 B[a℄where (�x2A)B[x℄ 
onv (�x2C)D[x℄, that is, A 
onv B and B[x℄ 
onv D[x℄,and (�x)b[x℄(a) red1 d[
℄ be
ause a red1 
 and b[x℄ red1 d[x℄. By indu
tion
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2A and d[x℄2D[x℄ under the assumption x2C. The derivation...
 2 A
 2 C...d[
℄ 2 D[
℄d[
℄ 2 B[a℄shows that d[
℄ is indeed a term of type B[a℄.2.4.7.4. The derivation of the given term has the form...a 2 A ...b 2 B[a℄(a; b) 2 (�x2A)B[x℄and (a; b) red1 (
; d) be
ause a red1 
 and b red1 d. By indu
tion hypothesis,
2A and d2B[a℄. Type 
onversion yields d2B[
℄, and (
; d) 2 (�x 2A)B[x℄then follows by �-introdu
tion.2.4.7.5. The derivation of the given term has the formx 2 A y 2 B[x℄... ... ...
 2 (�x2A)B[x℄ d[x; y℄ 2 C[(x; y)℄E(
; (�x)(�y)d[x; y℄) 2 C[
℄and E(
; (�x)(�y)d[x; y℄) red1 E(f; (�x)(�y)g[x; y℄) be
ause 
 red1 f and d[x; y℄red1 g[x; y℄. By indu
tion hypothesis, f 2 (�x2A)B[x℄ and g[x; y℄ 2 C[(x; y)℄under the assumptions x 2 A and y 2 B[x℄, and hen
e E(f; (�x)(�y)g[x; y℄) 2C[f ℄ follows by �-elimination. Type 
onversion then yields E(f; (�x)(�y)g[x; y℄)2 C[
℄ as desired.2.4.7.6. The derivation of the given term has the form...a 2 C ...b 2 D[a℄ x 2 A y 2 B[x℄(a; b) 2 (�x2C)D[x℄ ... ...(a; b) 2 (�x2A)B[x℄ d[x; y℄ 2 C[(x; y)℄E((a; b); (�x)(�y)d[x; y℄) 2 C[(a; b)℄where (�x2A)B[x℄ 
onv (�x2C)D[x℄, that is, A 
onv C and B[x℄ 
onv D[x℄,and E((a; b); (�x)(�y)d[x; y℄) red1 g[
; d℄ be
ause a red1 
, b red1 d and d[x; y℄red1 g[x; y℄. By indu
tion hypothesis, 
2C, d2D[a℄ and g[x; y℄2C[(x; y)℄ underthe assumptions x2A and y2B[x℄. The derivation
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 2 C
 2 A ...d 2 D[a℄d 2 B[
℄... ...g[
; d℄ 2 C[(
; d)℄g[
; d℄ 2 C[(a; b)℄shows that g[
; d℄ indeed is a term of type C[(a; b)℄.2.4.7.7. The derivation of the given term has the form...a 2 Ai(a) 2 A+Band i(a) red1 i(
) be
ause a red1 
. By indu
tion hypothesis, we get 
2A, fromwhi
h i(a) 2 A+B follows by +-introdu
tion. The other rule of +-introdu
tionis treated in the same way.2.4.7.8. The derivation of the given term has the formx 2 A y 2 B... ... ...
 2 A+B d[x℄ 2 C[i(x)℄ e[y℄ 2 C[j(y)℄D(
; (�x)d[x℄; (�y)e[y℄) 2 C[
℄and D(
; (�x)d[x℄; (�y)e[y℄) red1 D(f; (�x)g[x℄; (�y)h[y℄) be
ause 
 red1 f , d[x℄red1 g[x℄ and e[y℄ red1 h[y℄. By indu
tion hypothesis, f 2A+B and g[x℄ 2 C[i(x)℄and h[y℄2C[j(y)℄ under the assumptions x2A and y2B, respe
tively, and hen
eD(f; (�x)g[x℄; (�y)h[y℄) 2 C[f ℄ follows by +-elimination. Type 
onversion thenyields D(f; (�x)g[x℄; (�y)h[y℄)2C[
℄ as desired.2.4.7.9. The derivation of the given term has the form...a 2 C x 2 A y 2 Bi(a) 2 C +D ... ...i(a) 2 A+B d[x℄ 2 C[i(x)℄ e[y℄ 2 C[j(y)℄D(i(a); (�x)d[x℄; (�y)e[y℄) 2 C[i(a)℄where A+B 
onv C+D, that is, A 
onv C and B 
onv D, and D(i(a); (�x)d[x℄;(�y)e[y℄) red1 g[
℄ be
ause a red1 
 and d[x℄ red1 g[x℄. By indu
tion hypothesis,
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2C and g[x℄2C[i(x)℄ under the assumption x2A. The derivation...
 2 C
 2 A...g[
℄ 2 C[i(
)℄g[
℄ 2 C[i(a)℄shows that g[
℄ is indeed a term of type C[i(a)℄. The 
ase when i(a) is repla
edby j(b) is treated in the same way.2.4.7.10. The terms 1, . . . , n of type Nn 
annot redu
e to anything butthemselves, and hen
e this 
ase is trivial.2.4.7.11. The derivation of the given term has the form...
 2 Nn ...
1 2 C[1℄ : : : ...
n2C[n℄Rn(
; 
1; : : : ; 
n) 2 C[
℄and Rn(
; 
1; : : : ; 
n) red1 Rn(f; f1; : : : ; fn) be
ause 
 red1 f , 
1 red1 f1, . . . , 
nred1 fn. By indu
tion hypothesis, we get f 2Nn, f12C[1℄, . . . , fn2C[n℄, fromwhi
h Rn(f; f1; : : : ; fn)2C[f ℄ follows by Nn-elimination. Type 
onversion thenyields Rn(f; f1; : : : ; fn)2C[
℄ as desired.2.4.7.12. The derivation of the given term has the formm 2 Nn ...
1 2 C[1℄ : : : ...
n2C[n℄Rn(m; 
1; : : : ; 
n) 2 C[
℄and Rn(m; 
1; : : : ; 
n) red1 fm be
ause 
m red1 fm. By indu
tion hypothesis, weget fm2C[m℄ as desired.2.4.7.13. The 
ase when the given term is 0 of type N is trivial, so supposethe derivation of the given term has the form...a 2 Ns(a) 2 Nand that s(a) red1 s(
) be
ause a red1 
. By indu
tion hypothesis, 
 2N andhen
e s(
)2N follows by N -introdu
tion.2.4.7.14. The derivation of the given term has the form...
 2 N ...d 2 C[0℄ x 2 N y 2 C[x℄... ...e[x; y℄ 2 C[s(x)℄R(
; d; (�x)(�y)e[x; y℄) 2 C[
℄
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; d; (�x)(�y)e[x; y℄) red1 R(f; g; (�x)(�y)h[x; y℄) be
ause 
 red1 f , d red1g and e[x; y℄ red1 h[x; y℄. By indu
tion hypothesis, f 2N , g2C[0℄ and h[x; y℄2C[s(x)℄ under the assumptions x2N and y 2C[x℄, and hen
e R(f; g; (�x)(�y)h[x; y℄)2C[f ℄ follows by N -elimination. Type 
onversion then yields R(f; g; (�x)(�y)h[x; y℄)2C[
℄ as desired.2.4.7.15. The derivation of the given term has the form0 2 N d 2 C[0℄ x 2 N y 2 C[x℄... ...e[x; y℄ 2 C[s(x)℄R(0; d; (�x)(�y)e[x; y℄) 2 C[0℄and R(
; d; (�x)(�y)e[x; y℄) red1 g be
ause d red1 g. By indu
tion hypothesis,we get g2C[0℄ as desired.We also have to 
onsider the 
ase when the derivation of the given term hasthe form ...a 2 Ns(a) 2 N ...d 2 C[0℄ x 2 N y 2 C[x℄... ...e[x; y℄ 2 C[s(x)℄R(s(a); d; (�x)(�y)e[x; y℄) 2 C[s(a)℄and R(s(a); d; (�x)(�y)e[x; y℄) red1 h[
; R(
; g; (�x)(�y)h[x; y℄)℄ be
ause a red1 
,d red1 g and e[x; y℄ red1 h[x; y℄. By indu
tion hypothesis, 
 2N , g 2 C[0℄ andh[x; y℄2C[s(x)℄ under the assumptions x2N and y2C[x℄. The derivation...
 2 N ...
 2 N ...g 2 C[0℄ x 2 N y 2 C[x℄... ...h[x; y℄ 2 C[s(x)℄R(
; g; (�x)(�y)h[x; y℄) 2 C[
℄... ...h[
; R(
; g; (�x)(�y)h[x; y℄)℄ 2 C[s(
)℄h[
; R(
; g; (�x)(�y)h[x; y℄)℄ 2 C[s(a)shows that h[
; R(
; g; (�x)(�y)h[x; y℄)℄ is indeed a term of type C[s(a)℄.2.4.7.16. The derivation of the given term has the form...A 2 V x 2 A...B[x℄ 2 V(�x2A)B[x℄ 2 Vand (�x2A)B[x℄ red1 (�x2C)D[x℄ be
ause A red1 C and B[x℄ red1 D[x℄. Byindu
tion hypothesis, C 2 V and D[x℄ 2 V under the assumption x 2 A. The
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 theory of types 23derivation x 2 Cx 2 A... ...C 2 V D[x℄ 2 C(�x2C)D[x℄ 2 Vshows that (�x2C)D[x℄ is indeed a term of type V .The 
ase when � takes the pla
e of � is treated in the same way, so supposeinstead that the derivation of the given term has the form...A 2 V ...B 2 VA+B 2 Vand that A + B red1 C + D be
ause A red1 C and B red1 D. By indu
tionhypothesis, C2V and D2V do that C +D2V as desired.The 
ase when the given term is one of N0, N1, . . . , N is trivial be
ause theydo not redu
e to anything but themselves. The proof of theorem 2.4.7 is now
omplete.2.4.8. Corollary. The types are 
losed under redu
tion.Suppose that a type A redu
es to an expression B. We have to show thatB is a type as well and use indu
tion on the 
onstru
tion of A. The indu
tionstep is trivial, and so is the 
ase when A is V . If A is a term of type V , then,by the previous theorem, B is a term of type V and hen
e a type. Finally, sup-pose that A has the form P (a1; : : : ; an) where a1; . . . , an are terms of types A1,. . . , An[a1; : : : ; an�1℄, respe
tively. Then B must have the form P (b1; : : : ; bn)where a1 red b1, . . . , an red bn. By the previous theorem, b1, . . . , bn areterms of types A1, . . . , An[a1; : : : ; an�1℄, respe
tively. But Am[a1; : : : ; am�1℄
onv Am[b1; : : : ; bm�1℄ and hen
e, by the rule of type 
onversion, bm is a term oftype Am[b1; : : : ; bm�1℄ for m = 1, . . . , n, so that P (b1; : : : ; bn) is indeed a type.2.5. Axiom of 
hoi
e. Let x and y be variables of types A and B[x℄, re-spe
tively, and let C[x; y℄ be a type. We shall show how to derive the axiom of
hoi
e, that is, how to 
onstru
t a 
losed term of type(�x2A)(�y2B[x℄)C[x; y℄ !(�f 2(�x2A)B[x℄) (�x2A)C[x; f(x)℄:To begin with, note that, if we let p[z℄ and q[z℄ denote the terms E(z; (�x)(�y)x) andE(z; (�x)(�y)y) whi
h satisfy(p[(a; b)℄ 
ontr a;q[(a; b)℄ 
ontr b;
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 2 (�x2A)B[x℄p[
℄ 2 A 
 2 (�x2A)B[x℄q[
℄ 2 B[p[
℄℄hold as derived rules of term formation sin
e they are instan
es of the �-elimi-nation rule.Now, supposex 2 A and z 2 (�x2A)(�y2B[x℄)C[x; y℄:�-elimination gives z(x) 2 (�y2B[x℄)C[x; y℄;from whi
h the derived rules of inferen
e just stated allow us to 
on
ludep[z(x)℄ 2 B[x℄ and q[z(x)℄ 2 C[x; p[z(x)℄℄:Type 
onversion on the latter yieldsq[z(x)℄ 2 C[x; (�x)p[z(x)℄(x)℄;and we 
an then use �-introdu
tion to get(�x)p[z(x)℄ 2 (�x2A)B[x℄as well as (�x)q[z(x)℄ 2 (�x2A)C[x; (�x)p[z(x)℄(x)℄:Applying �-introdu
tion to the last two terms, we get((�x)p[z(x)℄; (�x)q[z(x)℄) 2 (�f 2(�x2A)B[x℄)(�x2A)C[x; f(x)℄;and a �nal �-introdu
tion then shows that(�z)((�x)p[z(x)℄; (�x)q[z(x)℄)is a (
losed) term of type(�x2A)(�y2B[x℄)C[x; y℄ !(�f 2(�x2A)B[x℄)(�x2A)C[x; f(x)℄as desired.
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 theory of types 253. REDUCTION OF SOME OTHER FORMAL THEORIES TO THETHEORY OF TYPES.3.1. Intuitionisti
 �rst order predi
ate logi
.3.1.1. Formulae are built up as usual from individual variables, fun
tion
onstants and predi
ate 
onstants by means of the logi
al operators ?, �, &, _,8 and 9. The negation �A of a formula A is de�ned as A � ?. We take therules of inferen
e from Gentzen 1934.�-introdu
tion ABA � B�-elimination A � B AB&-introdu
tion A BA&B&-elimination A&BA A&BB_-introdu
tion AA _B BA _ B_-elimination A _B AC BCC8-introdu
tion B[x℄8xB[x℄8-elimination 8xB[x℄B[a℄9-introdu
tion B[a℄9xB[x℄9-elimination 9xB[x℄ B[x℄CC
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 theory of types?-elimination ?C3.1.2. To translate this system into the theory of types, we �rst introdu
e a0-ary type 
onstant I� for the type of individuals and then pro
eed as follows.3.1.2.1. Translation of the language.3.1.2.1.1. An individual variable x is mapped into a variable x� of type I�.3.1.2.1.2. An n-ary fun
tion symbol f is mapped into a 
onstant f� of typeI�! : : :!I�| {z }n !I�and, if a1; . . . , an are individual terms, we let f(a1; : : : ; an)� be f�(a�1; : : : ; a�n).3.1.2.1.3. An n-ary predi
ate 
onstant P is mapped into an n-ary type
onstant P � with all arguments of type I�.3.1.2.1.4. An atomi
 formula P (a1; : : : ; an) is mapped into the type P �(a�1;: : : ; a�n), and the formulae ?, A � B, A&B, A _ B, 8xB[x℄ and 9xB[x℄ aretranslated into the types N0, A�!B�, A��B�, A� +B�, (�x�2I�)B�[x�℄ and(�x� 2 I�)B�[x�℄, respe
tively. Note that, for every formula A, the type A� isnormal.3.1.2.2. Translation of the derivations. By indu
tion on the length of aderivation a of a formula A in �rst order logi
, I shall 
onstru
t a term a� oftype A� in the theory of types.3.1.2.2.1. Corresponding to an assumption A in �rst order logi
, we introdu
ea variable x� of type A� in the theory of types.3.1.2.2.2. �-introdu
tion. A...BA � BBy indu
tion hypothesis, we have 
onstru
ted a term b�[x�℄ of type A� where x� isthe variable of type A� that 
orresponds to the assumption A. The translationof the derivation of A � B is de�ned to be (�x�)b�[x�℄. By the rule of �-introdu
tion, this is a term of the type A�!B� whi
h is (A � B)�.3.1.2.2.3. �-elimination. ...A � B ...ABBy indu
tion hypothesis, we have 
onstru
ted terms a� and b� of types A� and(A � B)�, respe
tively. The translation of the derivation of B is de�ned to beb�(a�) whi
h, by the rule of �-elimination and the de�nition of (A � B)� asA�!B�, is a term of type B�.
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 theory of types 273.1.2.2.4. &-introdu
tion. ...A ...BA&BBy indu
tion hypothesis, we have 
onstru
ted terms a� and b� of types A� andB�, respe
tively. The translation of the derivation of A&B is de�ned to be(a�; b�). By the rule of �-introdu
tion, this is a term of the type A��B� whi
his (A&B)�.3.1.2.2.5. &-elimination. ...A&BABy indu
tion hypothesis, we have 
onstru
ted a term 
� of type (A&B)�. Thetranslation of the derivation of A is de�ned to be p[
�℄, that is, E(
�; (�x)(�y)x),whi
h, by the rule of �-elimination and the de�nition of (A&B)� as A� � B�is a term of type A�. The 
ase when B rather than A is inferred from A&B istreated in the same way.3.1.2.2.6. _-introdu
tion. ...AA _ BBy indu
tion hypothesis, we have 
onstru
ted a term a� of type A�. The trans-lation of the derivation of A _ B is de�ned to be i(a�). By the rule of +-intro-du
tion, this is a term of the type A�+B� whi
h is (A_B)�. The 
ase in whi
hA _ B is inferred from B instead of A is treated in the same way.3.1.2.2.7. _-elimination. ...A _ B A...C B...CCBy indu
tion hypothesis, we have 
onstru
ted terms 
�, d�[x�℄ and e�[y�℄ oftypes (A _ B)�, C� and C�, respe
tively, where x� and y� are the variables
orresponding to the assumptions A and B. The translation of the derivationof C is de�ned to be D(
�; (�x�)d�[x�℄; (�y�)e�[y�℄) whi
h, by the rule of +-elimination and the de�nition of (A _ B)� as A� + B�, is a term of type C� asrequired.3.1.2.2.8. 8-introdu
tion. ...B[x℄8xB[x℄
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 theory of typesBy indu
tion hypothesis, we have 
onstru
ted a term b�[x�℄ of type B�[x�℄ wherex� is the variable of type I� whi
h 
orrespond to the individual variable x. Thetranslation of the derivation of 8xB[x℄ is de�ned to be (�x�)b�[x�℄. By the ruleof �-introdu
tion, this is a term of the type (�x�2I�)B�[x�℄ whi
h is (8xB[x℄)�.3.1.2.2.9. 8-elimination. ...8xB[x℄B[a℄By indu
tion hypothesis, we have 
onstru
ted a term b� of type (8xB[x℄)�. Letthe term a� of type I� be the translation of the individual term a. The translationof the derivation of B[a℄ is de�ned to be b�(a�) whi
h, by the rule of �-eliminationand the de�nition of (8xB[x℄)� as (�x�2I�)B�[x�℄, is a term of type B�[a�℄. Itonly remains to remark that B�[a�℄ equals B[a℄�.3.1.2.2.10. 9-introdu
tion. ...B[a℄9xB[x℄By indu
tion hypothesis, we have 
onstru
ted a term b� of type B[a℄� or, whatamounts to the same, B�[a�℄. Let the term a� of type I� be the translation of theindividual term a. The translation of the derivation of 9xB[x℄ is de�ned to be(a�; b�). By the rule of �-introdu
tion, this is a term of the type (�x�2I�)B�[x�℄whi
h is (9xB[x℄)�.3.1.2.2.11. 9-elimination. ...9xB[x℄ B[x℄...CCBy indu
tion hypothesis, we have 
onstru
ted terms 
� and d�[x�; y�℄ of types(9xB[x℄)� and C�, respe
tively, where x� is the translation of the individual vari-able x and y� is the variable of type B�[x�℄ that 
orresponds to the assumptionB[x℄. The translation of the derivation of C is de�ned to be E(
�; (�x�)(�y�)d�[x�; y�℄) whi
h, by the rule of �-elimination and the de�nition of (9xB[x℄)� as(�x�2I�)B�[x�℄, is a term of type C�.3.1.2.2.12. ?-elimination. ...?CBy indu
tion hypothesis, we have 
onstru
ted a term 
� of type ?�. The trans-lation of the derivation of C is de�ned to be R0(
�) whi
h, by the rule of N0-elimination and the de�nition of ?� as N0, is a term of type C�.



An intuitionisti
 theory of types 293.1.3. Consider the redu
tion relation between derivations in �rst order logi
whi
h is generated by Prawitz's 1965 rules of 
ontra
tion.�-
ontra
tion A...BA � B ...AB 
ontr ...A...B&-
ontra
tion ...A ...BA&BA 
ontr ...A ...A ...BA&BB 
ontr ...B_-
ontra
tion ...AA _ B A...C B...CC 
ontr ...A...C...BA _ B A...C B...CC 
ontr ...B...C8-
ontra
tion ...B[x℄8xB[x℄B[a℄ 
ontr ...B[a℄9-
ontra
tion ...B[a℄9xB[x℄ B[x℄...CC 
ontr ...B[a℄...CThe mapping of the derivations of �rst order logi
 into terms of the theory oftypes is an isomorphi
 imbedding in the sense that, if a red b, then a� red b�,and, 
onversely, if a is a derivation in �rst order logi
 and a� red b�, then b� is thetranslation of a derivation b in �rst order logi
 su
h that a red b. Consequently,Prawitz's 1965 normalization theorem for �rst order logi
 is a 
orollary of thenormalization theorem for the theory of types that will be proved later on.3.2. Intuitionisti
 �rst order arithmeti
.3.2.1. As usual, we take the language to be the language of �rst order
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ate logi
 based on the single binary predi
ate 
onstant = and the fourfun
tion 
onstants, 0, 0, +, and �. We also in
lude the propositional 
onstant >for truth. To the rules of inferen
e of intuitionisti
 �rst order predi
ate logi
, weadd the axiom >, the indu
tion s
hemaC[0 C[x℄C[x0℄C[a℄and the rule of formula 
onversionAB A 
onv Bwhere 
onv is the 
onvertibility relation whi
h is generated by the rules of 
on-tra
tion (a+ 0 
ontr a;a+ b0 
ontr (a+ b)0; (a � 0 
ontr 0;a � b0 
ontr a � b+ a;8>>>><>>>>:0 = 0 
ontr >;a0 = 0 
ontr ?;0 = b0 
ontr ?;a0 = b0 
ontr a = b:It is easy to verify that the usual axioms for number theory as given by Kleene1952, for example, 
an be derived in this system.When one is interested in the redu
tion of derivations, the present formulationof �rst order arithmeti
 has a de�nite advantage over the standard one. Supposenamely that the numeri
al term a redu
es to b. We then want a derivation ofthe form ...C[0℄ C[x℄...C[x0℄C[a℄...to redu
e to the derivation in whi
h a has been repla
ed by b,...C[0℄ C[x℄...C[x0℄C[b℄C[a℄ C[a℄ 
onv C[b℄...
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 theory of types 31However, if arithmeti
 is formulated without a rule of formula 
onversion, thisredu
tion 
annot be 
arried out without inserting a logi
ally 
omplex derivationof C[a℄ from C[b℄, and this is a transformation whi
h destroys the stru
tureof the derivation to su
h an extent that the transformed derivation fails to bede�nitionally equal to the original one.3.2.2. The translation of �rst order arithmeti
 into the theory of typespro
eeds as follows.3.2.2.1. Translation of the language.3.2.2.1.1. A numeri
al variable x is translated into a variable x� of type N .3.2.2.1.2. 0� is taken to be the term 0 of type N .3.2.2.1.3. (a0)� is s(a�).3.2.2.1.4. (a+ b)� is R(b�; a�; (�x�)(�y�)s(y�)).3.2.2.1.5. (a � b)� is R(b�; 0; (�x�)(�y�)(y + a)�).3.2.2.1.6. An equation a = b is translated into E(a�; b�) where E(a; b) isde�ned to be R(a; (�z)R(z;>; (�x)(�y)?);(�u)(�v)(�z)R(z;?; (�x)(�y)v(x)))(b)whi
h is a term of type V and hen
e a type that satis�es the s
hema8>>>><>>>>:E(0; 0) red >;E(s(a); 0) red ?;E(0; s(b)) red ?;E(s(a); s(b)) red E(a; b):Note that the axioms ? 2 V and > 2 V whi
h form part of the re
e
tionprin
iple are needed in order to prove that E(a; b) is a term of type V and hen
ea type.3.2.2.1.7. The translation of 
omposite formulae runs as in the 
ase of �rstorder predi
ate logi
, the propositional 
onstant > being translated into N1.3.2.2.2. Translation of the derivations. In addition to the rules of inferen
eof �rst order predi
ate logi
 already stated, we have to 
onsider the axiom >,the indu
tion s
hema and the rule of formula 
onversion.3.2.2.2.1. The axiom > is translated into the term 1 of the type N1 whi
his >�.3.2.2.2.2. Let us now turn to the indu
tion s
hema,...C[0℄ C[x℄...C[x0℄C[a℄By the hypothesis of the indu
tion on the length of the given derivation, we havefound terms d� and e�[x�; y�℄ of types C[0℄� and C[x0℄�, respe
tively, y� being the
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orresponds to the assumption C[x℄. The translationof the derivation of C[a℄ is de�ned to be R(a�; d�; (�x�)(�y�)e�[x�; y�℄) whi
h, bythe N -elimination rule, is a term of type C�[a�℄ or, what amounts to the same,C[a℄�.Note that the translation is su
h that the indu
tion 
ontra
tions in �rst orderarithmeti
 (see, for example,Prawitz 1971)8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
...C[0℄ C[x℄...C[x0℄C[0℄...C[0℄ C[x℄...C[x0℄C[a0℄


ontr

ontr

...C[0℄...C[0℄ C[x℄...C[x0℄C[a℄...C[a0℄are mapped into the 
ontra
tions(R(0; d�; (�x�)(�y�)e�[x�; y�℄) 
ontr d�;R(s(a�); d�; (�x�)(�y�)e�[x�; y�℄) 
ontre�[a�; R(a�; d�; (�x�)(�y�)e�[x�; y�℄)℄in the theory of types.3.2.2.2.3. If the term a� of type A� is the translation of the derivation of thepremise of an appli
ation of the rule of formula 
onversion...AB A 
onv Bwe 
an take the translation of the derivation of B to be the same term a�, be
auseA 
onv B implies A� 
onv B� and hen
e we 
an 
on
lude that a� is a term oftype B� by the rule of type 
onversion.3.3. Intuitionisti
 arithmeti
 of �nite type with the axiom of 
hoi
e.3.3.1. The formalization of this theory that we shall 
onsider extends thesystem of �rst order arithmeti
 spe
i�ed above and di�ers in 
ertain respe
tsfrom the ones given by Spe
tor 1962, Tait 1967 and Troelstra 1971.3.3.1.1. Types. 0 is a type, and, if � and � are types, so is �!� .3.3.1.2. Terms.
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 theory of types 333.3.1.2.1. A variable of type � is a term of type � .3.3.1.2.2. 0 is a term of type 0, and, if a is a term of type 0, so is a0.3.3.1.2.3. If x is a variable of type � and b[x℄ is a term of type � , then(�x)b[x℄ is a term of type �!� .3.3.1.2.4. If 
, d and e[x; y℄ are terms of types 0, � and � , respe
tively, x beinga numeri
al variable and y a variable of type � , then R(
; d; (�x)(�y)e[x; y℄) is aterm of type � .3.3.1.2.5. If a and b are terms of types � and �! � , respe
tively, then b(a)is a term of type � .3.3.1.3. Formulae are built up from numeri
al equations by means of propo-sitional 
onne
tion and quanti�
ation of variables of arbitrary �nite type.3.3.1.4. Rules of 
ontra
tion.(�x)b[x℄(a) 
ontr b[a℄;(R(0; d; (�x)(�y)e[x; y℄) 
ontr d;R(a0; d; (�x)(�y)e[x; y℄) 
ontr e[a;R(a; d; (�x)(�y)e[x; y℄)℄;8>>>><>>>>:0 = 0 
ontr >;a0 = 0 
ontr ?;0 = b0 
ontr ?;a0 = b0 
ontr a = b:3.3.1.5. The rules of inferen
e are those of intuitionisti
 �rst order arithmeti
,ex
ept that the quanti�er rules have to be extended in the obvious way to all�nite types. In addition, there is the (intuitionisti
ally valid) axiom of 
hoi
e8x9yC[x; y℄ � 9f8xC[x; f(x)℄with x, y and f of arbitrary types �, � and �!� , respe
tively.3.3.2. The translation of this theory into the theory of types pro
eeds asfollows.3.3.2.1. Translation of the types. We take 0� to be N and (�! �)� to be��!��.3.3.2.2. Translation of the terms.3.3.2.2.1. A variable x of type � is translated into a variable x� of type ��.3.3.2.2.2. 0� is the term 0 of type N , and (a0)� is s(a�).3.3.2.2.3. ((�x)b[x℄)� is de�ned to be (�x�)b�[x�℄.3.3.2.2.4. (R(
; d; (�x)(�y)e[x; y℄))� is de�ned to be R(
�; d�; (�x�)(�y�)e�[x�; y�℄).3.3.2.2.5. (b(a))� is de�ned to be b�(a�).3.3.2.3. The translation of the formulae runs as in the 
ase of �rst orderarithmeti
, the only novelty being that (8xB[x℄)� and (9xB[x℄)� with x of type� are de�ned to be (�x�2��)B�[x�℄ and (�x�2��)B�[x�℄, respe
tively.
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 theory of types3.3.2.4. The interpretation of the rules of inferen
e is no more 
ompli
atedthan in the 
ase of �rst order arithmeti
, the quanti�er rules of inferen
e of highertype being treated just like those of ground type. There remains the axiom of
hoi
e, whose translation(�x�2��)(�y�2��)C�[x�; y�℄ !(�f�2 ��!��)(�x�2��)C�[x�; f�(x�)℄is but an instan
e of the axiom of 
hoi
e in the theory of types whi
h we provedin se
tion 2.5.3.3.3. When the law of the ex
luded middle A _ �A (or, equivalently,redu
tio ad absurdum ��A � A) is added to intuitionisti
 arithmeti
 of �nitetype with the axiom of 
hoi
e, the resulting system 
ontains full simple typetheory. (See Spe
tor 1962, for example, in the 
ase when the fun
tion whi
hexists by virtue of the axiom of 
hoi
e and the spe
ies whi
h exists by virtueof the 
omprehension axiom both have arguments of ground type.) Thus theproof theoreti
 strength of the system in
reases by a very large amount. Sin
eintuitionisti
 arithmeti
 of �nite type with the axiom of 
hoi
e is a subsystemof the theory of types, the same holds for the latter theory. Consequently, theaxiom s
hema A + �A (or, equivalently, � � A!A) is not 
onsistent relativeto the theory of types, although, of 
ourse, it may be proved to be 
onsistentby stronger means. In parti
ular, there is no hope for the double negationinterpretation (see Kolmogorov 1925, G�odel 1933 and Gentzen 1933) to work,the reason for this being that the axioms for + and � are stronger than the usualintuitionisti
 axioms for _ and 9.3.4. Intuitionisti
 arithmeti
al analysis with the axiom of 
hoi
e.3.4.1. To the system of �rst order arithmeti
 we now add n-ary predi
atevariables X , Y , . . . for every n = 0, 1, . . . . An atomi
 formula is either of theform a = b or of the form B(a1; : : : ; an) where B is an n-ary predi
ate termand a1; . . . , an are numeri
al terms. Formulae are built up from atomi
 ones bymeans of the propositional 
onne
tives and quanti�ers of both �rst and se
ondorder. An n-ary predi
ate term is either an n-ary predi
ate variable or of theform (�x1 : : : xn)B[x1; : : : ; xn℄ where B[x1; : : : ; xn℄ is a formula whi
h 
ontainsno bound predi
ate variables. The �rst order quanti�er rules of inferen
e areextended in the obvious way to the se
ond order. Finally, we add the axiom of
hoi
e 8x9XC[x;X ℄ � 9Y 8xC[x; Y (x)℄:Here Y is a predi
ate variable of one argument more than X and C[x; Y (x)℄denotes the result of repla
ing every part of C[x;X ℄ of the form X(a1; : : : ; an),by Y (x; a1; : : : ; an).3.4.2. The translation of this theory into the theory of types pro
eeds as inthe 
ase of �rst order arithmeti
 with the following additions.
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 theory of types 353.4.2.1. An n-ary predi
ate variable X is translated into a variable X� oftype N! : : :!N| {z }n !Vin the theory of types.3.4.2.2. B(a1; : : : ; an)� is de�ned to be B�(a�1; : : : ; a�n).3.4.2.3. 8XB[X ℄ and 9XB[X ℄ are translated into(�X� 2N ! : : :!N ! V )B�[X�℄ and (�X� 2N ! : : :!N ! V )B�[X�℄,respe
tively.3.4.2.4. ((�x1; : : : ; xn)B[x1; : : : ; xn℄)� is de�ned to be (�x�1) : : : (�x�n)B�[x�1;: : : ; x�n℄ whi
h is seen to be a term of type N ! : : : ! N ! V by repeateduse of the re
e
tion prin
iple and the fa
t that the translations E(a�; b�) andB�(a�1; : : : ; a�n) of the atomi
 formulae a = b and B(a1; : : : ; an) are terms of typeV . 3.4.2.5. The se
ond order quanti�er rules of inferen
e are interpreted justlike the �rst order ones.3.4.2.6. The translation of the axiom of 
hoi
e(�x�2N)(�X�2N! : : :!N!V )C�[x�; X�℄!(�Y �2N!N! : : :!N!V )(�x�2N)C�[x�; Y �(x�)℄is just an instan
e of the axiom of 
hoi
e in the theory of types whi
h we provedin se
tion 2.5.4. THE NORMALIZATION THEOREM AND ITS CONSEQUENCES.4.1. Normalization theorem. Every term redu
es to a normal term.Sin
e we have introdu
ed 
onstants of every 
losed type, it will be suÆ
ientto prove normalization for 
losed terms. Suppose namely that a[x1; : : : ; xn℄ isan open term whi
h depends on the variables x1, . . . , xn of types A1, . . . ,An[x1; : : : ; xn�1℄, respe
tively. For m = 1; : : : ; n we may then introdu
e a
onstant am of the 
losed type Am[a1; : : : ; am�1℄. By substituting the 
onstantsa1; : : : ; an for the variables x1; : : : ; xn, we get a 
losed term whi
h behavesjust like a[x1; : : : ; xn℄ from the point of view of normalization.My proof of normalization uses an extension of the method of 
omputabilityintrodu
ed by Tait 1967 in order to prove normalization for the terms of G�odel's1958 theory of primitive re
ursive fun
tionals of �nite type and systemati
allyexploited in the Pro
eedings of the Se
ond S
andinavian Logi
 Symposium. InG�odel's theory, the types and the terms are generated separately from ea
hother. This makes it possible, �rst, to de�ne by indu
tion on the 
onstru
tionof a type the notion of 
omputability for terms of that type, and, se
ond, toprove by indu
tion on the 
onstru
tion of a term that it is 
omputable. In thepresent theory, however, the de�nition of the notion of 
omputability and theproof that an arbitrary term is 
omputable 
an no longer be separated, be
ause
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 theory of typesthe terms and the types are generated simultaneously. Instead, we have to showby indu
tion on the 
onstru
tion of a type or term, in 
ase A is a type, how tode�ne the predi
ate 'A whi
h expresses the 
omputability of a term of type A,and, in 
ase a is a term of type A, that 'A is de�ned and that 'A(a) holds, thatis, that a is a 
omputable term of type A.The situation is further 
ompli
ated by the fa
t that a type A[x1; : : : ; xn℄ aswell as a term a[x1; : : : ; xn℄ of type A[x1; : : : ; xn℄ in general depends on 
ertainfree variables x1; : : : ; xn of types A1; : : : ; An[x1; : : : ; xn�1℄, respe
tively. Byindu
tion hypothesis, we shall then know that 'A1 has been de�ned and that, ifa1 is a 
losed term of type A1 su
h that 'A1(a1), then 'A2[a1℄ has been de�ned andthat, . . . , if a1; : : : ; an�1 are 
losed terms of types A1; : : : ; An�1[a1; : : : ; an�2℄,respe
tively, su
h that 'A1(a1), . . . , 'An�1[a1;:::;an�2℄(an�1) then 'An[a1;:::;an�1℄has been de�ned. Letting a1; : : : ; an be 
losed terms of types A1, . . . , An[a1; : : : ;an�1℄, respe
tively, su
h that'A1(a1); : : : ; 'An[a1;:::;an�1℄(an);we have to show, in 
ase A[x1; : : : ; xn℄ is a type, how to de�ne'A[a1;:::;an℄and, in 
ase a[x1; : : : ; xn℄ is a term of type A[x1; : : : ; xn℄, that 'A[a1;:::;an℄ isde�ned and that 'A[a1;:::;an℄(a[a1; : : : ; an℄)holds, that is, that a[a1; : : : ; an℄ is a 
omputable term of type A[a1; : : : ; an℄.Several 
ases have to be distinguished, one for ea
h of the rules of type andterm formation. In order to alleviate the notational burden, I shall not exhibitexpli
itly any free variables ex
ept the eigenvariables of the parti
ular rule oftype or term formation whi
h is being 
onsidered.It will be 
onvenient to say that a term has introdu
tion or elimination formdepending on whether it has been formed by means of one of the introdu
tionor one of the elimination rules. Thus, unless it is a 
onstant, a 
losed termne
essarily has either introdu
tion or elimination form.4.1.1. De�nition of 'A for a type symbol A.4.1.1.1. 'P (a1;:::;an) is the spe
ies of normalizable 
losed terms of typeP (a1; : : : ; an).4.1.1.2. Suppose that 'A has been de�ned and that 'B[a℄ has been de�nedfor all 
losed terms a of type A su
h that 'A(a). We then de�ne '(�x2A)B[x℄ bythe following three 
lauses.4.1.1.2.1. If (�x)b[x℄ is a 
losed term of type (�x2A)B[x℄ and 'B[a℄(b[a℄)for all 
losed terms a of type A su
h that 'A(a), then '(�x2A)B[x℄((�x)b[x℄).4.1.1.2.2. A 
losed normal term of type (�x 2 A)B[x℄ whi
h is not of theform (�x)b[x℄ satis�es '(�x2A)B[x℄.4.1.1.2.3. If the 
losed term b of type (�x2A)B[x℄ has elimination form andredu
es to a term a su
h that '(�x2A)B[x℄(a), then '(�x2A)B[x℄(b).
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 theory of types 374.1.1.3. Again, suppose that 'A has been de�ned and that 'B[a℄ has been de-�ned for all 
losed terms a of type A su
h that 'A(a). We then de�ne '(�x2A)B[x℄by the following three 
lauses.4.1.1.3.1. If a and b are 
losed terms of types A and B[a℄, respe
tively su
hthat 'A(a) and 'B[a℄(b), then '(�x2A)B[x℄((a; b)).4.1.1.3.2. A 
losed normal term of type (�x 2 A)B[x℄ whi
h is not of theform (a; b) satis�es '(�x2A)B[x℄.4.1.1.3.3. If the 
losed term b of type (�x2A)B[x℄ has elimination form andredu
es to a term a su
h that '(�x2A)B[x℄(a), then '(�x2A)B[x℄(b).4.1.1.4. Supposing 'A and 'B have been de�ned already, we de�ne 'A+Bby the following three 
lauses.4.1.1.4.1. If a is a 
losed term of type A su
h that 'A(a), then 'A+B(i(a)).Similarly, if b is a 
losed term of type B su
h that 'B(b), then 'A+B(j(b)).4.1.1.4.2. A 
losed normal term of type A+B whi
h is neither of the formi(a) nor of the form j(b) satis�es 'A+B .4.1.1.4.3. If the 
losed term b of type A+B has elimination form and redu
esto a term a su
h that 'A+B(a), then 'A+B(b).4.1.1.5. The predi
ate 'V is de�ned by trans�nite indu
tion. But, simulta-neously with the de�nition of the meaning of 'V (A), that is, of what 
onstitutesa proof of 'V (A), we have to de�ne by trans�nite indu
tion the predi
ate 'Awhi
h expresses what it means for a 
losed term of the small type A to be 
om-putable. A
tually, 'A depends not only on A but also on the proof of 'V (A)although my notation does not indi
ate that expli
itly.4.1.1.5.1. If C is a 
losed normal term of type V whi
h is not of the form(�x2A)B[x℄, (�x2A)B[x℄ or A + B, then 'V (C) and 'C is de�ned to be thespe
ies of normalizable 
losed terms of type C.4.1.1.5.2. If 'V (A) and 'V (B[a℄) for all 
losed terms a of type A su
h that'A(a), then 'V ((�x2A)B[x℄) and '(�x2A)B[x℄ is de�ned as in 4.1.1.2.4.1.1.5.3. This 
ase is like the previous one, repla
ing � by � and referringto 4.1.1.3 instead.4.1.1.5.4. If 'V (A) and 'V (B), then 'V (A + B) and 'A+B is de�ned as in4.1.1.4.4.1.1.5.5. If the 
losed term B of type V has elimination form and redu
esto a term A su
h that 'V (A), then 'V (B) and 'B is set equal to 'A.4.1.1.6. If A is a term of type V su
h that 'V (A), then 'A is the asso
iatedpredi
ate de�ned in 4.1.1.5.4.1.2. Lemma. When de�ned, the predi
ate 'A has the following three prop-erties. First, 'A(a) holds if a is a 
losed normal term of type A whi
h doesnot have introdu
tion form. Se
ond, if b is a 
losed term of type A whi
h haselimination form and redu
es to a term a su
h that 'A(a), then 'A(b). Third,'A(a) implies that a is normalizable.We prove the lemma by indu
tion on the de�nition of 'A.4.1.2.1. 'P (a1;:::;an) is the spe
ies of normalizable 
losed terms of typeP (a1; : : : ; an) and has therefore trivially the three properties stated in the lemma.
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 theory of types4.1.2.2. '(�x2A)B[x℄ has trivially the �rst two properties. To verify the third,suppose that a term satis�es '(�x2A)B[x℄. Then it redu
es to a term whi
h iseither normal, in whi
h 
ase we are done, or else has the form (�x)b[x℄ and theproperty that 'B[a℄(b[a℄) for all a su
h that 'A(a). By indu
tion hypothesis,'A(a) holds if a is a 
onstant of type A. Consequently, 'B[a℄ is de�ned and'B[a℄(b[a℄) so that b[a℄ is normalizable by indu
tion hypothesis. And, b[a℄ beingnormalizable, so is (�x)b[x℄.4.1.2.3. '(�x2A)B[x℄ was de�ned so as to have the �rst two properties. Toverify the third, suppose that a term satis�es '(�x2A)B[x℄. It must then redu
eto a term whi
h is either normal, in whi
h 
ase we are done, or else has theform (a; b) where 'A(a) and 'B[a℄(b). By indu
tion hypothesis, a and b arenormalizable and, 
onsequently, so is (a; b).4.1.2.4. 'A+B was de�ned so as to have the �rst two properties. To verify thethird, suppose that a term satis�es 'A+B . It must then redu
e to a term whi
h iseither normal, in whi
h 
ase we are done, or else has the form i(a) or j(b) where,in the �rst 
ase, 'A(a) and, in the se
ond 
ase, 'B(b). By indu
tion hypothesis,'A(a) implies that a is normalizable and 'B(b) implies that b is normalizable.Hen
e i(a) is normalizable in the �rst 
ase and j(b) in the se
ond.4.1.2.5. 'V was de�ned so as to have the �rst two properties. By trans�niteindu
tion on the proof of 'V (A), we shall at the same time prove that 'V (A)implies that A is normalizable and verify that the asso
iated predi
ate 'A hasall the three properties stated in the lemma.4.1.2.5.1. If C is a 
losed normal term of type V whi
h is not of the form(�x 2 A)B[x℄, (�x 2 A)B[x℄ or A + B, then C is a fortiori normalizable andthe asso
iated predi
ate 'C , being de�ned as the spe
ies of normalizable 
losedterms of type C, has trivially all the three properties stated in the lemma.4.1.2.5.2. Suppose that 'V ((�x 2 A)B[x℄) is 
on
luded from 'V (A) and'V (B[a℄) for all terms a su
h that 'A(a). By indu
tion hypothesis, A is normal-izable and 'A(a) if a is a 
onstant of type A. Hen
e 'V (B[a℄) so that, again byindu
tion hypothesis, B[a℄ is normalizable. But then so is (�x 2A)B[x℄. Theveri�
ation that the lemma holds for '(�x2A)B[x℄ is as in 
ase 4.1.2.2.4.1.2.5.3. This 
ase is like the previous one, repla
ing � by � and referringto 4.1.2.3 instead.4.1.2.5.4. Suppose that 'V (A + B) has been 
on
luded from 'V (A) and'V (B). By indu
tion hypothesis, A and B are normalizable and hen
e so isA+B. The veri�
ation that the lemma holds for 'A+B is as in 
ase 4.1.2.4.4.1.2.5.5. Suppose that 'V (B) is 
on
luded from 'V (A) and the knowledgethat the 
losed term B of type V has elimination form and redu
es to A. Byindu
tion hypothesis, A is normalizable and 'A has all the three properties statedin the lemma. Hen
e B is normalizable and, sin
e 'B was set equal to 'A, thelemma holds for 'B as well.4.1.2.6. That the lemma holds for the predi
ate 'A asso
iated with a termof type V su
h that 'V (A) has just been proved in 4.1.2.5. The proof of thelemma is now 
omplete.
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 theory of types 394.1.3. Lemma. If 'A and 'B are both de�ned and A 
onv B, then 'A(a) ifand only if 'B(a).Note that, in a

ordan
e with the remark in 4.1.1.5, the lemma is not triviallytrue even if A and B are synta
ti
ally equal, be
ause even for one and the sametype symbol A there may be di�erent ways of de�ning the predi
ate 'A.Sin
e A 
onv B, the types A and B are either both small or both large. Inthe latter 
ase, they must be built up in the same way from V , de�nitionallyequal atomi
 types of the form P (a1; : : : ; an) and de�nitionally equal small types.'P (a1;:::;an) was de�ned in 4.1.1.1 to be the spe
ies of normalizable 
losed terms oftype P (a1; : : : ; an). Hen
e, if P (a1; : : : ; an) 
onv P (b1; : : : ; bn), then 'P (a1;:::;an)and 'P (b1;:::;bn) are extensionally equal be
ause of the rule of type 
onversion.It now only remains to prove the lemma for two small types A and B. WhenA is a small type, 'A is de�ned if and only if 'V (A). Therefore we 
an usetrans�nite indu
tion on the proofs of 'V (A) and 'V (B). Several 
ases have tobe distinguished depending on how 'V (A) and 'V (B) have been inferred.4.1.3.1. If both 'V (A) and 'V (B) hold by virtue of 4.1.1.5.1, then 'A and'B are the spe
ies of normalizable 
losed terms of types A and B, respe
tively,and so they are extensionally equal by the rule of type 
onversion.4.1.3.2. If A and B have the forms (�x2C)D[x℄ and (�x2E)F [x℄, respe
-tively, then C 
onv E and D[x℄ 
onv F [x℄. Hen
e 'C and 'D are extensionallyequal by indu
tion hypothesis. For the same reason, 'D[
℄ and 'F [
℄ are exten-sionally equal for all 
 su
h that 'C(
) or, equivalently, 'E(
). Being de�ned by4.1.1.2, 'A and 'B are extensionally equal as well.4.1.3.3. This 
ase is like the previous one, repla
ing � by � and referring to4.1.1.3 instead.4.1.3.4. If A and B have the forms C + D and E + F , respe
tively, thenC 
onv E and D 
onv F . Hen
e, on the one hand, 'C and 'E and, on the otherhand, 'D and 'F are extensionally equal by indu
tion hypothesis. Being de�nedby 4.1.1.4, 'A and 'B are extensionally equal as well.4.1.3.5. If one of 'V (A) and 'V (B), say 'V (A), is inferred by 4.1.1.5.5,then A redu
es to C su
h that 'V (C). By indu
tion hypothesis, 'C and 'B areextensionally equal, and, sin
e 'A in this 
ase is set equal to 'C , so are 'A and'B .4.1.4. Veri�
ation that, if a is a term of type A, then 'A is de�ned and'A(a).4.1.4.1. When we introdu
e a variable x of type A, we know by indu
tionhypothesis that 'A is de�ned. We have to show that 'A is de�ned and that,if a is a 
losed term of type A, su
h that 'A(a), then 'A(a). This requires noargument.4.1.4.2. When we introdu
e a 
onstant a of type A, we know by indu
tionhypothesis that 'A is de�ned. We have to show that 'A is de�ned and that'A(a) holds whi
h follows from the �rst part of lemma 4.1.2.4.1.4.3. �-introdu
tion. By indu
tion hypothesis, we know that 'A is de�nedand that, if a is a 
losed term of type A, then 'B[a℄ is de�ned and 'B[a℄(b[a℄).
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 theory of typesHen
e '(�x2A)B[x℄ is de�ned by 4.1.1.2 and '(�x2A)B[x℄((�x)b[x℄) holds by virtueof 4.1.1.2.1 whi
h is what we had to prove.4.1.4.4. �-elimination. By indu
tion hypothesis, we know that 'A and'(�x2A)B[x℄ are de�ned and that 'A(a) and '(�x2A)B[x℄(b) both hold. Three 
as-es have to be distinguished 
orresponding to the de�ning 
lauses of '(�x2A)B[x℄.4.1.4.4.1. b is of the form (�x)d[x℄ and 'B[a℄(d[a℄) holds for all a su
h that'A(a). Then b(a) has elimination form and redu
es to d[a℄ so that 'B[a℄(b(a))by the se
ond part of lemma 4.1.2.4.1.4.4.2. b is normal and not of the form (�x)d[x℄. Let 
 be the normalform of a whi
h exists by the third part of lemma 4.1.2. Then b(a) redu
es tob(
) whi
h is normal and has elimination form so that 'B[a℄(b(a)) by the �rstand se
ond parts of lemma 4.1.2.4.1.4.4.3. b has elimination form and redu
es to d whi
h satis�es '(�x2A)B[x℄.Then b(a) redu
es to d(a) whi
h we have already shown to satisfy 'B[a℄. Hen
e'B[a℄(b(a)) by the se
ond part of lemma 4.1.2.4.1.4.5. �-introdu
tion. By indu
tion hypothesis, 'A is de�ned and 'B[a℄ isde�ned for all a su
h that 'A(a). Also, 'A(a) and 'B[a℄(b). Hen
e '(�x2A)B[x℄is de�ned by 4.1.1.3 and '(�x2A)B[x℄((a; b)) holds by virtue of 4.1.1.3.1.4.1.4.6. �-elimination. By indu
tion hypothesis, we know that '(�x2A)B[x℄is de�ned and that 'C[
℄ is de�ned for all 
 su
h that '(�x2A)B[x℄(
). Also,'(�x2A)B[x℄(
) holds and 'C[(a;b)℄(d[a; b℄) holds for all a and b su
h that 'A(a)and 'B[a℄(b). Three 
ases have to be distinguished 
orresponding to the de�ning
lauses of '(�x2A)B[x℄.4.1.4.6.1. 
 has the form (a; b) where 'A(a) and 'B[a℄(b). Then E(
; (�x)(�y)d[x; y℄) has elimination form and redu
es to d[a; b℄ whi
h satis�es 'C[(a;b)℄. Hen
e'C[
℄(E(
; (�x)(�y)d[x; y℄)) by the se
ond part of lemma 4.1.2.4.1.4.6.2. 
 is normal and not of the form (a; b). Let a and b be 
on-stants of types A and B[a℄, respe
tively. Then 'A(a) and 'B[a℄(b) by the �rstpart of lemma 4.1.2. Hen
e 'C[(a;b)℄(d[a; b℄) so that d[a; b℄ redu
es to a normalterm g[a; b℄ by the third part of lemma 4.1.2. But then E(
; (�x)(�y)d[x; y℄) re-du
es to E(
; (�x)(�y)g[x; y℄) whi
h is normal and has elimination form so that'C[
℄(E(
; (�x)(�y)d[x; y℄)) by the �rst two parts of lemma 4.1.2.4.1.4.6.3. 
 has elimination form and redu
es to a term f whi
h satis�es'(�x2A)B[x℄. Then E(
; (�x)(�y)d[x; y℄) redu
es to E(f; (�x)(�y)d[x; y℄) whi
hwe have already shown to satisfy 'C[f ℄. Hen
e 'C[
℄(E(
; (�x)(�y)d[x; y℄)) bythe se
ond part of lemma 4.1.2 and lemma 4.1.3.4.1.4.7. +-introdu
tion. By indu
tion hypothesis, 'A and 'B are bothde�ned and 'A(a) holds. Hen
e 'A+B is de�ned by 4.1.1.4 and 'A+B(i(a)) holdsby virtue of 4.1.1.4.1. The se
ond rule of +-introdu
tion is treated in the sameway.4.1.4.8. +-elimination. By indu
tion hypothesis, we know that 'A+B isde�ned and that 'C[
℄ is de�ned for all 
 su
h that 'A+B(
). Also, 'A+B(
)holds and 'C[i(a)℄(d[a℄) and 'C[j(b)℄(e[b℄) hold for all a and b su
h that 'A(a)and 'B(b), respe
tively. Three 
ases have to be distinguished 
orresponding to
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lauses of 'A+B .4.1.4.8.1. 
 has the form i(a) and 'A(a). Then D(
; (�x)d[x℄; (�y)e[y℄) haselimination form and redu
es to d[a℄ whi
h satis�es 'C[i(a)℄. Hen
e 'C[
℄(D(
;(�x)d[x℄; (�y)e[y℄)) by the se
ond part of lemma 4.1.2. The 
ase when 
 is of theform j(b) is treated in the same way.4.1.4.8.2. 
 is normal and not of the form i(a) or j(b). Let a and b be
onstants of types A and B, respe
tively. Then 'A(a) and 'B(b) by the �rstpart of lemma 4.1.2. Hen
e 'C[i(a)℄(d[a℄) and 'C[j(b)℄(e[b℄) so that d[a℄ and e[b℄redu
e to normal terms g[a℄ and h[b℄ by the third part of lemma 4.1.2. But thenD(
; (�x)d[x℄; (�y)e[y℄) redu
es to D(
; (�x)g[x℄; (�y)h[y℄) whi
h is normal andhas elimination form so that 'C[
℄(D(
; (�x)d[x℄; (�y)e[y℄)) by the �rst two partsof lemma 4.1.2.4.1.4.8.3. 
 has elimination form and redu
es to a term f whi
h satis�es'A+B . Then D(
; (�x)d[x℄; (�y)e[y℄) redu
es to D(f; (�x)d[x℄; (�y)e[y℄) whi
hwe have already shown to satisfy 'C[f ℄. Hen
e 'C[
℄(D(
; (�x)d[x℄; (�y)e[y℄)) bythe se
ond part of lemma 4.1.2 and lemma 4.1.3.4.1.4.9. Nn-introdu
tion. 'Nn is de�ned by 4.1.1.5.1 to be the spe
ies ofnormalizable 
losed terms of type Nn. Hen
e 'Nn(1), . . . , 'Nn(n).4.1.4.10. Nn-elimination. By indu
tion hypothesis, we know that 'C[
℄ isde�ned for all 
 su
h that 'Nn(
). Also, 'Nn(
) and 'C[1℄(
1), . . . , 'C[n℄(
n).We distinguish three 
ases depending on the form of 
.4.1.4.10.1. 
 is m. Then Rn(
; 
1; : : : ; 
n) has elimination form and redu
esto 
m whi
h satis�es 'C[m℄. Hen
e 'C[
℄(Rn(
; 
1; : : : ; 
n)) by the se
ond part oflemma 4.1.2.4.1.4.10.2. 
 is normal and not one of 1, . . . , n. By the third part of lemma4.1.2, 
1, . . . , 
n redu
e to normal terms f1, . . . , fn. Hen
e Rn(
; 
1; : : : ; 
n)redu
es to Rn(
; f1; : : : ; fn) whi
h is normal and has elimination form so that'C[
℄(Rn(
; 
1; : : : ; 
n)) by the �rst two parts of lemma 4.1.2.4.1.4.10.3. 
 is not normal but redu
es to a normal term f . Then Rn(
; 
1;: : : ; 
n) redu
es to Rn(f; 
1; : : : ; 
n) whi
h we have already shown to satisfy 'C[f ℄.Hen
e 'C[
℄(Rn(
; 
1; : : : ; 
n)) by the �rst part of lemma 4.1.2 and lemma 4.1.3.4.1.4.11. N -introdu
tion. 'N is de�ned by 4.1.1.5.1 to be the spe
ies ofnormalizable 
losed terms of type N . Hen
e 'N (0) holds and 'N (a) implies'N (s(a)).4.1.4.12. N -elimination. By indu
tion hypothesis, we know that 'C[a℄ is de-�ned for all a su
h that 'N (a). Also, 'N (
) and'C[0℄(d) hold and 'C[s(a)℄(e[a;b℄) holds for all a and b su
h that 'N (a) and 'C[a℄(b). We distinguish four 
asesdepending on how we have inferred 'N (
).4.1.4.12.1. 
 is 0. Then R(
; d; (�x)(�y)e[x; y℄) redu
es to d whi
h satis�es'C[0℄ so that 'C[
℄(R(
; d; (�x)(�y)e[x; y℄)) by the se
ond part of lemma 4.1.2.4.1.4.12.2. 
 is of the form s(a). We then know already that 'N (a) and'C[a℄(R(a; d; (�x)(�y)e[x; y℄)) both hold so that we 
an 
on
lude 'C[s(a)℄(d[a;R(a; d; (�x)(�y)e[x; y℄)℄). But R(
; d; (�x)(�y)e[x; y℄) redu
es to d[a;R(a; d; (�x)(�y)e[x; y℄)℄ so that it must satisfy 'C[
℄ by the se
ond part of lemma 4.1.2.
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 is normal and has elimination form. From 'C[0℄(d) we 
an
on
lude that d redu
es to a normal term g by the third part of lemma 4.1.2.Also, let a and b be 
onstant of types N and C[a℄, respe
tively. Then 'N (a) and'C[a℄(b) by the �rst part of lemma 4.1.2. Hen
e 'C[s(a)℄(e[a; b℄) so that e[a; b℄redu
es to a normal term h[a; b℄, again by the third part of lemma 4.1.2. Butthen R(
; d; (�x)(�y)e[x; y℄) redu
es to R(
; g; (�x)(�y)h[x; y℄) whi
h is normaland has elimination form so that 'C[
℄(R(
; d; (�x)(�y)e[x; y℄)) by the �rst twoparts of lemma 4.1.2.4.1.4.12.4. 
 has elimination form and redu
es to a term f su
h that 'N (f).Then R(
; d; (�x)(�y)e[x; y℄) redu
es to R(f; d; (�x)(�y)e[x; y℄) whi
h we have al-ready shown to satisfy 'C[f ℄. Hen
e 'C[
℄(R(
; d; (�x)(�y)e[x; y℄)) by the se
ondpart of lemma 4.1.2 and lemma 4.1.3.4.1.4.13. V -introdu
tion. 'V (N0), 'V (N1), . . . and 'V (N) all hold byvirtue of de�nition 4.1.1.5.1. Next, suppose that 'V (A) holds and that 'V (B[a℄)holds for all a su
h that 'A(a). Then we 
an 
on
lude 'V ((�x 2A)B[x℄) and'V ((�x 2A)B[x℄) by 4.1.1.5.2 and 4.1.1.5.3. Finally, suppose that 'V (A) and'V (B) both hold. Then we 
an 
on
lude 'V (A+B) by 4.1.1.5.4.4.1.4.14. Type 
onversion. By indu
tion hypothesis, 'A and 'B are bothde�ned and 'A(a) holds. Hen
e 'B(a) by lemma 4.1.3. The proof of the nor-malization theorem is now 
omplete.4.2. Corollary. Every type redu
es to a normal type.Every type is built up by means of the operations �, �, and + from V , smalltypes and atomi
 types of the form P (a1; : : : ; an). A small type, being a termof type V , is normalizable a

ording to the normalization theorem, and so is atype of the form P (a1; : : : ; an) sin
e a1, . . . , an are all terms. Hen
e every typeis normalizable.4.3. Corollary. It 
an be me
hani
ally de
ided whether or not two terms ortwo types are de�nitionally equal.Let A and B be two types. In order to de
ide whether or not A 
onv B wesimply normalize A and B, whi
h is possible a

ording to the previous 
orollary,and 
he
k whether or not their normal forms are synta
ti
ally equal ex
ept possi-bly for di�eren
es in the naming of their bound variables. Similarly, if a is a termof type A and b a term of type B, we �rst de
ide whether or not A 
onv B andthen, in 
ase the answer is positive, whether or not a 
onv b. A

ording to thenormalization theorem, the latter de
ision 
an also be rea
hed by normalizing aand b and 
he
king if their normal forms are the same.4.4. The form of the normal terms. In order to determine the synta
-ti
al form of the normal terms, it will be 
onvenient to introdu
e some ter-minology. The major subterm of a term whi
h has elimination form, is de-�ned by stipulating that the major subterm of b(a) is b and that the majorsubterm of E(
; (�x)(�y)d[x; y℄), D(
; (�x)d[x℄; (�y)e[y℄), Rn(
; 
1; : : : ; 
n) andR(
; d; (�x)(�y)e[x; y℄) in all 
ases is 
. The main redex of a redex is the redexitself, and the main redex of a term whi
h has elimination form but is not aredex is the main redex of its major subterm. If a term has elimination form,
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ontains a main redex or else by taking the major subterm of itsmajor subterm of . . . of its major subterm we rea
h a 
onstant or a free vari-able, be
ause when we form a term of elimination form no free variable in itsmajor subterm 
an be
ome bound. In parti
ular, a normal term must eitherhave introdu
tion form or 
ontain a 
onstant or a free variable. Hen
e we haveproved (by purely 
ombinatorial reasoning) that, in the system without obje
t
onstants,a 
losed normal must haveterm of type the form(�x2A)B[x℄ (�x)b[x℄(�x2A)B[x℄ (a; b)A+B i(a) or j(b)Nn 1; 2; : : : or nN s(s(: : : s(0) : : :))V (�x2A)B[x℄; (�x2A)B[x℄; A+B; N0; N1; : : : or NCombining this with the normalization theorem, we 
an 
on
lude that a 
losedterm of one of the types shown in the left 
olumn redu
es to a term of the formexhibited on the same line in the right 
olumn.4.5. Corollary. A number theoreti
 fun
tion whi
h 
an be 
onstru
ted in thetheory of types is me
hani
ally 
omputable.Of 
ourse, the fa
t that there is a not ne
essarily me
hani
al pro
edure for
omputing every fun
tion in the present theory of types does not require anyproof at all for us, intelligent beings, who 
an understand the meaning of thetypes and the terms and re
ognize that the axioms and rules of inferen
e ofthe theory are 
onsonant with the intuitionisti
 notion of fun
tion a

ording towhi
h a fun
tion is the same as a rule or method.By saying that a number theoreti
 fun
tion 
an be 
onstru
ted in the theoryof types, I mean that there is a 
losed term f of type N!N whi
h denotes it.(Of 
ourse, f must not 
ontain any obje
t 
onstants.) Suppose that we want to�nd the value of the fun
tion for a 
ertain natural number whi
h is denoted bythe numeral m. Then f(m) denotes the value of the fun
tion for this argument.But f(m) is a 
losed term of type N so that, a

ording to what was proved in4.4, it redu
es to a numeral n. It only remains to remark that the normal formof a term 
an be found in a purely me
hani
al way, that is, by manipulatingsymbol strings a

ording to rules whi
h refer solely to their synta
ti
al stru
tureand not to their meaning.Similarly, having formalized the 
onstru
tion of the real numbers (for ex-ample, as Cau
hy sequen
es of rationals) in the theory of types, we 
an proveas a 
orollary to the normalization theorem that every individual real numberwhi
h we 
onstru
t in the formal theory 
an be 
omputed by a ma
hine with anarbitrary degree of approximation.
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 theory of typesThese 
orollaries show that formalization taken together with the ensuingproof theoreti
al analysis e�e
tuates the 
omputerization of abstra
t intuition-isti
 mathemati
s that above all Bishop 1967 and 1970 has asked for. Whatis doubtful at present is not whether 
omputerization is possible in prin
iple,be
ause we already know that, but rather whether these proof theoreti
al 
om-putation pro
edures are at all useful in pra
ti
e. So far, they do not seem tohave found a single signi�
ant appli
ation.4.6. Completeness of intuitionisti
 �rst order predi
ate logi
. Consider a�rst order formula C 
ontaining no other logi
al 
onstants than � and 8, andlet C� be its translation into the theory of types as de�ned in se
tion 3.1.2.1.Remember that in order to de�ne the translation we had to introdu
e, �rst, atype 
onstant I� denoting the type of individuals, se
ond, for every predi
ate
onstant P , a type 
onstant P � with all arguments of type I�, and, third, forevery fun
tion 
onstant f , an obje
t 
onstant f� of type I�! : : :!I�!I�. Wesuppose that no other obje
t 
onstants than these have been introdu
ed into thetheory of types.4.6.1. Theorem. Let C be a 
losed �rst order formula. Then there is a 
losedterm of type C� in the theory of types if and only if C is provable in intuitionisti
�rst order predi
ate logi
.This shows that the fragment of �rst order predi
ate logi
 determined by �and 8 is 
omplete relative to the theory of types. Kreisel 1970 has suggested to
all this property faithfulness rather than 
ompleteness sin
e it is quite di�erentfrom the property that 
lassi
al �rst order predi
ate logi
 enjoys by virtue ofG�odel's 
ompleteness theorem.The suÆ
ien
y was established already in se
tion 3.1.2.2 where we showedhow to translate a derivation 
 of a formula C in intuitionisti
 �rst order predi
atelogi
 into a term 
� of type C� in the theory of types. The translation is su
h that
� is 
losed if and only if the derivation 
 
ontains no free individual variablesand no undis
harged assumptions.The ne
essity is a 
onsequen
e of the normalization theorem and lemma 4.6.3below.4.6.2. Lemma. Let a� be a normal term of type I� whose free variables areeither of type I� or of type A� where A is a �rst order formula. Then there isan individual term a whose translation is a�.The proof is by indu
tion on the size of the term a� whi
h, being of typeI�, 
annot have introdu
tion form. Hen
e we 
an take the major subterm of . . .of its major subterm until we rea
h either a variable or a 
onstant. In the �rst
ase, it must be a variable x� of type I� and we are done, and, in the se
ond
ase, it must be a 
onstant f� of type I�! : : :! I�! I� so that a� is of theform f�(a�1; : : : ; a�n). By indu
tion hypothesis, a�1, . . . , a�n are translations ofindividual terms a1, . . . , an in �rst order logi
. Hen
e a� is the translation ofthe individual term f(a1; : : : ; an).4.6.3. Lemma. Let C be a �rst order formula and suppose that 
� is anormal term of type C� whose free variables are either of type I� or of type A�
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 theory of types 45where A is a �rst order formula. Then there is a derivation 
 of the formula Cin intuitionisti
 �rst order logi
 whose translation is 
�.The proof is by indu
tion on the 
onstru
tion of 
�. Three 
ases have to bedistinguished.4.6.3.1. 
� and C� have the forms (�x�)b�[x�℄ and (�x�2I�)B�[x�℄, respe
-tively. By indu
tion hypothesis, there is a derivation...B[x℄in intuitionisti
 �rst order logi
 whose translation is b�[x�℄. Consequently, we
an take 
 to be the derivation ...B[x℄8xB[x℄4.6.3.2. 
� and C� have the forms (�x�)b�[x�℄ and A�!B�, respe
tively.By indu
tion hypothesis, there is a derivationA...Bin intuitionisti
 �rst order logi
 whose translation is b�[x�℄. Consequently, we
an take 
 to be the derivation A...BA � Bin whi
h the assumption A 
orresponding to the variable x� of type A� has been
an
elled.4.6.3.3. 
 has elimination form. Being normal, this is not possible unlessit has the form y�(a�1; : : : ; a�n) where y� is a variable of a type B� whi
h is thetranslation of a �rst order formula B. But then the type of a�i must be eitherI� or of the form A�i where Ai is a �rst order formula. In the �rst 
ase, we
an 
on
lude from the previous lemma that a�i must be the translation of anindividual term ai, and, in the se
ond 
ase, we 
an 
on
lude from the indu
tionhypothesis that a�i must be the translation of a derivation ai of the formulaAi in intuitionisti
 �rst order logi
. Consequently, 
� is the translation of thederivation 
 whi
h is obtained by letting the assumption B be followed by asequen
e of elimination inferen
es, in the �rst 
ase, a 8-elimination with theindividual term ai in the 
on
lusion, and, in the se
ond 
ase, an appli
ation ofmodus ponens with Ai as minor premise.
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