
David Cash

Hash Functions,  
Public-Key Encryption

CMSC 23200/33250, Autumn 2018, Lecture 6

University of Chicago

Plan

1. A few points about hash functions
2. Introducing Public-Key Encryption
3. Math for RSA
4. Security properties of RSA

Assignment 1 is Online and Due Next Wednesday

1. Start early. You can get bogged down in low-level bugs with bits
or Python quirks.

2. Please report any “500 Internal Server” Errors privately on Piazza -
We will fix them to throw useful error messages.

Hash Functions

Definition: A hash function is a deterministic function H that reduces arbitrary
strings to fixed-length outputs.

HM H(M)

MD5: m = 128 bits

SHA-1: m = 160 bits

SHA-256: m = 256 bits
SHA-512: m = 512 bits

SHA-3: m >= 224 bits

Some security goals:

- collision resistance: can’t find M != M’ such that H(M) = H(M’)

- preimage resistance: given H(M), can’t find M

- second-preimage resistance: given H(M), can’t find M’ s.t.

 H(M’) = H(M)
Note: Very different from hashes used in data structures!

Output length

Hash Functions are not MACs

Both map long inputs to short outputs… But a hash function does not take a key.

HM H(M) MACK()M

K

T

Intuition: a MAC is like a hash function, that only the holders of key can evaluate.

Hash Function Security History

- Can always find a collision in 2m/2 time (≪2m time). “Birthday Attack”
- MD5 (1992) was broken in 2004 - can now find collisions very quickly.
- SHA-1 (1995) was broken in 2017 - A big computer can find collisions
- SHA-256/SHA-512 (2001) are not broken
- SHA-3 (2015) is new and not broken

d131dd02c5e6eec4693d9a0698aff95c 2fcab58712467eab4004583eb8fb7f89
55ad340609f4b30283e488832571415a 085125e8f7cdc99fd91dbdf280373c5b
d8823e3156348f5bae6dacd436c919c6 dd53e2b487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080a80d1e c69821bcb6a8839396f9652b6ff72a70

d131dd02c5e6eec4693d9a0698aff95c 2fcab50712467eab4004583eb8fb7f89
55ad340609f4b30283e4888325f1415a 085125e8f7cdc99fd91dbd7280373c5b
d8823e3156348f5bae6dacd436c919c6 dd53e23487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080280d1e c69821bcb6a8839396f965ab6ff72a70

MD5(

= MD5(

)

)

Xiaoyun Wang (Tsinghua University), 2004
- Broken with clever techniques
- Compare to DES (broken b/c key too short)

Breaking hash with 128-bit output
takes 264 time (feasible).

Why are collisions bad?

The binary
should hash to

3477a3498234f

Hashes to
3477a3498234f,

I accept.
MD5()=3477a3498234f

MD5()=3477a3498234f

MACs from Hash Functions

Goal: Build a secure MAC out of a good hash function.

Common construction: MAC(K, M) = H(K || M)

- Totally insecure if H = MD5, SHA1, SHA-256, SHA-512 (Assignment 2)
- Is secure with SHA-3 

Upshot: Use HMAC and avoid various issues.  

Later: Hash functions and certificates

Switching Gears: Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don’t have pre-shared a key, is there any way they can send private
messages?

Switching Gears: Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don’t have pre-shared a key, is there any way they can send private
messages?

Rivest, Shamir, Adleman
in 1978: Yes, differently!
Turing Award, 2002, 
+ no money

Diffie and Hellman
in 1976: Yes!

Turing Award, 2015,  
+ Million Dollars

Cocks, Ellis, Williamson
in 1969, at GCHQ: 
Yes, we know about both…

Pat on the back?

Switching Gears: Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don’t have pre-shared a key, is there any way they can send private
messages?

<some bits>

M?

Message M Receive M

Formally impossible (in some sense): 
No difference between receiver and adversary.

Switching Gears: Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don’t have pre-shared a key, is there any way they can send private
messages?

R←rand()

<some bits>

Doesn’t know R,R’,
Can’t “try them all” (too many)

<some bits>

<some bits>

R’←rand()

Receive M

Message M

M?

Switching Gears: Public-Key Encryption

Definition. A public-key encryption scheme consists of three
algorithms Kg, Enc, and Dec  
 
- Key generation algorithm Kg, takes no input and outputs a

(random) public-key/secret key pair (PK,SK)  

- Encryption algorithm Enc, takes input the public key PK and the
plaintext M, outputs ciphertext C←Enc(PK,M)  

- Decryption algorithm Dec, is such that

 Dec(SK,Enc(PK,M))=M

Public-Key Encryption in Action

PK=public key 
known to everyone

SK=secret key 
known by Receiver only

KgPK,SK

PK

PK

SK
M C = Enc(PK,M) M

C

PK

All known Public-Key Encryption uses…

MATH

N = pq

Some RSA Math

RSA setup
p and q be large prime numbers (e.g. around 22048)
N = pq
N is called the modulus

Called “2048-bit primes”

p=7, q=11 gives N=77
p=17 q=61 gives N=1037

Modular Arithmetic: Two sets

ℤN = {0,1,…, N − 1}

ℤ*N = {i : gcd(i, N) = 1} (ℤ*N ⊊ ℤN)

gcd = “greatest common divisor”

Examples:
ℤ*13 = {1,2,3,4,5,6,7,8,9,10,11,12}

ℤ*15 = {1,2,4,7,8,11,13,14}

Defintion: ϕ(N) = |ℤ*N | ϕ(13) = 12 ϕ(15) = 8

Modular Arithmetic

Definition

x mod N means the remainder when x is divided by N.

ℤ*15 = {1,2,4,7,8,11,13,14}

2 × 4 = 8 mod 15 13 × 8 = 14 mod 15

Theorem:
ℤ*N is “closed under multiplication modulo N”.

RSA “Trapdoor Function”

Lemma: Suppose e, d ∈ ℤ*ϕ(N) satisfy ed = 1 mod ϕ(N). Then for
any x ∈ ℤN we have that

(xe)d = xed = x mod N

N = 15, ϕ(N) = 8, e = 3, d = 3Example:

ed = 3 ⋅ 3 = 9 = 1 mod 8The satisfy condition in lemma:

(53)3 = 59 = 1953125 = 5 mod 15

So “powering by 3” always un-does itself.

Usually e and d are different.

RSA “Trapdoor Function”

x mod N y = xe mod N

Easy given N, e, x

Hard given N, e, y

Finding “e-th roots modulo N” is hard.
Contrast is usual arithmetic, where finding roots is easy.

RSA “Trapdoor Function”
PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Enc((N, e), M) = Me mod N

Dec((N, d), C) = Cd mod N
Messages and ciphertexts 
are in ℤ*N

Setting up RSA:
- Need two large random primes
- Have to pick e and then find d
- Don’t worry about how exactly

Encryption with the RSA Trapdoor Function?

- Several problems
- Encryption of 1 is 1
- e=3 is popular. Encryption of 2 is 8… (no wrapping mod N)
- RSA Trapdoor Function is deterministic

Solution: Pad input M using random (structured) bits.
- Serves purpose of padding and nonce/IV randomization

PKCS#1 v1.5 RSA Encryption

Enc()

Dec()

M

(N,e)

C

C M

(N,d)

Enc((N,e),M):

1. pad ← (n-m-3) random non-zero bytes.
2. X←00||02||pad||00||M
3. Output X mod N

N: n-byte long integer.
Want to encrypt m-byte messages.

e

Dec((N,d),M):
1. X← Cd mod N
2. Parse X = aa||bb||rest
3. If aa≠00 or bb≠02 or 00∉rest:  

 Output ERROR
4. Parse rest = pad||00||M
5. Return M

Warning: Broken

Bleichenbacher’s Padding Oracle Attack (1998)

C’

ACCEPT or  
REJECT

System
(e.g. webserver)
SK=(N,d)

PK=(N,e)

Dec((N,d),M):
1. X← Cd mod N
2. Parse X = aa||bb||rest
3. If aa≠00 or bb≠02 or 00∉rest:  

 Output ERROR
4. Parse rest = pad||00||M
5. Return M

Infer something about 
(C’)d mod N

Want to 
decrypt C

Info about X

Originally needed millions of C’.
Best currently about 10,000.

Better Padding: RSA-OAEP

RSA-OAEP [Bellare and Rogaway, ‘94]
prevents padding-oracle attacks with
better padding using a hash function.

(Then apply RSA trapdoor function.)

random bytes

functions based on  
hash functions

Uses “Feistel Network” (!)

The End

