Design patterns

?

Jlale\’

- N (:jl <

Design Patterns

Elements of Re

yC11

it

rm
o
=
m
e
(:jl
A4
m
o
o
(:‘,l
7
>
ot
)]
Q
0
_
=
=
(]

S31438

ord by Crady Booch

What are design patterns

* Solutions to specific problems in OO software design

* 23 patterns in 3 categories
* Creational

 Structural
* Composite

e Behaviorial
* Observer
* Interpreter

Why are we studying them?

Observer

* One to many relationship
 The many need to know changes in “one” immediately

* Example
* Points & Shapes
* Map & location-based services
* A game character & other game components

Example

* |f a person/subject changes its status, how to let all his “subscriber”
knows?
* What to do when there is only one subscriber?
 What to do when there are multiple subscribers of different types?
 What if new subscribers are added?
 How to make the code easy to maintain and extend?

Class diagram

Subject views . Observer
model
+attach(in Observer) < +update()
- - - | +setState()
. |+getState() 45‘
ViewOne ViewTwo
; +update() +update()

for each view in views
v.update()

e - - - -

model.getState();

Example (location, location-related
service)

* “location” would be the Subject in previous slide

» “observer” would be the superclass of all the sub-classes that try to
update themselves based on the location information

The benefit of observer pattern

* When new types of observers are added, the prototype and
implementation of the subject class doesn’t need any changes.

Other things to pay attention

* Don’t forget the subscribing and unsubscribing methods
 Pull notification vs push notification

 What if | want to delete a subject

e Can an observer subscribe multiple subjects?

Composite pattern

* Tree hierarchy
* How do you build a tree?

How to build a tree and traverse it?

struct node{
struct node™ left;
struct node* right;
int val;
int sum(){

}

How to differentiate leaves and others?

struct leaf{
int val;
int sum(){ return val;}

}

How to accommodate different types of
internal nodes”?

* Examples

e struct node or struct leaf?
e Book
* Graphics

Class diagram

«interface»
Component

N\

+doThis()

AN

Leaf

Composite

-elements

<>

+doThis()

+addElement()
+doThis()

bk - - - -

-elements

J

// Container functionalit:
// for each element
elements[i] .doThis () ;

Apply composite pattern to tree

e “Leaf” in previous slide is tree leaf
e “Composite” in previous slide is non-leaf nodes in a tree

Interpreter

* What is an interpreter
* Language, compiler

* Example

* Boolean expression
e Abstract syntax tree

a&&b || !c

a parser will turn this into an abstract syntax tree, and then an interpreter will evaluate the
tree. How to write a program to do the tree-based evaluation?

How to do addition & subtraction

* How to represent an addition expression?
* Constant + Constant
* Constant + Constant + Constant

* How to represent a subtraction expression?

How to do addition & subtraction

* How to represent an addition expression?
* Tree is a good form

* How to represent a subtraction expression?
* Tree

* The challenge:
* Any node in the above tree could be a constant, an addition expression, or a
subtraction expression, etc.

Class diagram

Client

/

AbstractExpression

«interface»

+solve(inout Context)

AN

I

Context

TerminalExpression

CompoundExpression

+solve(inout Context)

Perform "parent" functionality then
delegate to each "child" element
"Context" is data structure for holding
input and output

Strategy Design Pattern

Classes centered on operations, instead of data

Strategy

* Multiple variants of one algorithm
 Different types of objects only differing in behavior

* The key part of a class is its method, NOT its data
* Example: printer, sorter, comparator
* The method works for multiple data types

Example

* Printers
* Various font size, indentation, capitalization

Class diagram
-- encapsulate algorithms into class

Program to an interface, not an implementation.

CI" - «interface»
ont | Abstraction | Open for extension,
closed for modification.
+doSomething()
AN
ImplementationOne ImplementationTwo

+doSomething() +doSomething()

Alternative solutions
e IfinC
e Super-class on the data side

* Template in C++

Other examples

* Different sorting
 Different rendering

Template

* Provide a skeleton for similar algorithms
* The key of the class is still operation, not data

* Example

Class diagram

FrameworkClass

stepOne () ;
+templateMethod() ----|stepTwo () ;
+stepOne() stepThree () ;
+stepTwo()
+stepThree()
AN

ApplicationClassOne

+stepTwo()

ApplicationClassTwo

+stepTwo()

Visitor
* How to add a class of operations for a variety of data classes?

* Example
 Different operations for AST nodes
 Different operations for Person (Female, Male)

Class diagram

Client

\'J

«interface»
Element

AN

I

ElementOne

+accept(in v : Visitor)

v.visit(this); Il‘

ElementTwo

«interface»
Visitor

+visit(in e : ElementOne)
+visit(in e : ElementTwo)

AN

«interface» VisitorOne

+visit(in e : ElementOne)
+visit(in e : ElementTwo)

The concrete types of the
Element and Visitor objects have
been "recovered". Perform the work

appropriate for their pair of types.

VisitorTwo

Visitor

Two class hierarchies: data & operations

What is it good at?

* If you add operations (Visitor classes), the interface of the Element classes remains
unchanged

What is it bad at?
* If you add new Element sub-class, significant changes are needed for the Visitor side

Double-dispatch

* Imagine two dimensions of a function call
* The exact algorithm
* The type of data this algorithm works on

* You will get chance to make choice along both dimensions dynamically, using visitor pattern

Creational design patterns

Factory Method

e Lets a class defer instantiation to subclasses
* No need to decide which subclass | want to use statically

* Example

e Date (US style, Europe style, Chinese style, ...)
* Window

Class diagram

Product Creator
+FactoryMethod() — —|— < product = FactoryMethad()
+AnOperation()
ConcreteProduct ConcreteCreator

+FactoryMethod() — -+ — 4 return new ConcreteProduct

Factorv decion nattern ic comewhat cimilar with Strateov decion nattern

When to use factory design pattern?

* The type of the sub-class is determined at run time
* The type changes very infrequently once set

Abstract Factory

* For creating families of related or dependent objects without
specifying their concrete classes

 Examples
* Date, currency, data
* Window, mouse, scroll bar, ...

Abhctract factorv decion nattern ic comewhat cimilar with Vicitor deciocn nattern

Class diagram

AbstractFactory Client
+CreateProductA()
aCieaieniocucl AbstractProductA
|
T A
ProductA1 ProductA2
—_ — — =
| |
| |
ConcreteFactory1 ConcreteFactory2 | :
|
+CreateProductA() +CreateProductA() |
+CreateProductB() +CreateProductB() —{l SUAUNEIR R UEtS R — :
| |
I l 4 |
| : |
: N ProductB1 ProductB2 :
-

