
Design patterns

What are design patterns

•  Solu%ons	to	specific	problems	in	OO	so3ware	design	
•  23	pa:erns	in	3	categories	

•  Crea%onal	
•  Structural	

•  Composite		
•  …	

•  Behaviorial	
•  Observer	
•  Interpreter		
•  …		

Why are we studying them?

Observer

• One	to	many	rela%onship	
•  The	many	need	to	know	changes	in	“one”	immediately	

•  Example	
•  Points	&	Shapes	
•  Map	&	loca%on-based	services		
•  A	game	character	&	other	game	components	
•  …	

Example

•  If	a	person/subject	changes	its	status,	how	to	let	all	his	“subscriber”	
knows?	

• What	to	do	when	there	is	only	one	subscriber?	
• What	to	do	when	there	are	mul%ple	subscribers	of	different	types?	
• What	if	new	subscribers	are	added?	
•  How	to	make	the	code	easy	to	maintain	and	extend?	

Class diagram

Example (location, location-related
service)
•  “loca%on”	would	be	the	Subject	in	previous	slide	
•  “observer”	would	be	the	superclass	of	all	the	sub-classes	that	try	to	
update	themselves	based	on	the	loca%on	informa%on	

The benefit of observer pattern

• When	new	types	of	observers	are	added,	the	prototype	and	
implementa%on	of	the	subject	class	doesn’t	need	any	changes.	

Other things to pay attention

• Don’t	forget	the	subscribing	and	unsubscribing	methods	
• Pull	no%fica%on	vs	push	no%fica%on	
• What	if	I	want	to	delete	a	subject	
• Can	an	observer	subscribe	mul%ple	subjects?	

Composite pattern

•  Tree	hierarchy	
• How	do	you	build	a	tree?	

How to build a tree and traverse it?

struct	node{	
			struct	node*	le3;	
			struct	node*	right;	
			int	val;	
			int	sum(){	
									…	
			}	
}	

How to differentiate leaves and others?

struct	leaf{	
			int	val;	
			int	sum(){	return	val;}	
}	

How to accommodate different types of
internal nodes?
•  Examples		

•  struct	node	or	struct	leaf?	
•  Book	
•  Graphics		

Class diagram

Apply composite pattern to tree

•  “Leaf”	in	previous	slide	is	tree	leaf	
•  “Composite”	in	previous	slide	is	non-leaf	nodes	in	a	tree	

Interpreter

• What	is	an	interpreter	
•  Language,	compiler	

•  Example	
•  Boolean	expression	

•  Abstract	syntax	tree	
	
a	&&	b	||	!c	
a	parser	will	turn	this	into	an	abstract	syntax	tree,	and	then	an	interpreter	will	evaluate	the	
tree.	How	to	write	a	program	to	do	the	tree-based	evalua%on?	

How to do addition & subtraction

• How	to	represent	an	addi%on	expression?	
•  Constant	+	Constant	
•  Constant	+	Constant	+	Constant	

• How	to	represent	a	subtrac%on	expression?	

How to do addition & subtraction

• How	to	represent	an	addi%on	expression?	
•  Tree	is	a	good	form	

• How	to	represent	a	subtrac%on	expression?	
•  Tree		

•  The	challenge:	
•  Any	node	in	the	above	tree	could	be	a	constant,	an	addi%on	expression,	or	a	
subtrac%on	expression,	etc.	

Class diagram

Strategy Design Pattern
Classes	centered	on	opera%ons,	instead	of	data	

Strategy

• Mul%ple	variants	of	one	algorithm	
• Different	types	of	objects	only	differing	in	behavior	
•  The	key	part	of	a	class	is	its	method,	NOT	its	data	

•  Example:	printer,	sorter,	comparator	
•  The	method	works	for	mul%ple	data	types	

Example

• Printers		
•  Various	font	size,	indenta%on,	capitaliza%on	

Class diagram
-- encapsulate algorithms into class

Alternative solutions

•  If	in	C	

•  Super-class	on	the	data	side	

•  Template	in	C++	

Other examples
•  Different	sor%ng	
•  Different	rendering	
•  …	

Template

• Provide	a	skeleton	for	similar	algorithms	
•  The	key	of	the	class	is	s%ll	opera%on,	not	data	

•  Example		

Class diagram

Visitor

• How	to	add	a	class	of	opera%ons	for	a	variety	of	data	classes?	

•  Example	
•  Different	opera%ons	for	AST	nodes	
•  Different	opera%ons	for	Person	(Female,	Male)	

Class diagram

Visitor
•  Two	class	hierarchies:	data	&	opera%ons	

• What	is	it	good	at?	
•  If	you	add	opera%ons	(Visitor	classes),	the	interface	of	the	Element	classes	remains	
unchanged	

• What	is	it	bad	at?	
•  If	you	add	new	Element	sub-class,	significant	changes	are	needed	for	the	Visitor	side	

•  Double-dispatch	
•  Imagine	two	dimensions	of	a	func%on	call	

•  The	exact	algorithm	
•  The	type	of	data	this	algorithm	works	on	

•  You	will	get	chance	to	make	choice	along	both	dimensions	dynamically,	using	visitor	pa:ern	

Creational design patterns

Factory Method

•  Lets	a	class	defer	instan%a%on	to	subclasses	
•  No	need	to	decide	which	subclass	I	want	to	use	sta%cally	

•  Example		
•  Date	(US	style,	Europe	style,	Chinese	style,	…)	
• Window		

Class diagram

Factory	design	pa:ern	is	somewhat	similar	with	Strategy	design	pa:ern	

When to use factory design pattern?

•  The	type	of	the	sub-class	is	determined	at	run	%me	
•  The	type	changes	very	infrequently	once	set	

Abstract Factory

•  For	crea%ng	families	of	related	or	dependent	objects	without	
specifying	their	concrete	classes	

•  Examples		
•  Date,	currency,	data	
• Window,	mouse,	scroll	bar,	…	

Abstract	factory	design	pa:ern	is	somewhat	similar	with	Visitor	design	pa:ern	

Class diagram

