CS220

Software Maintenance

Definition

* Software maintenance
* The process of changing a software system after it has been delivered

Reasons behind maintenance

* Why delivered software needs change?

Reasons behind maintenance

* Why delivered software needs change?
* Fault repair
* Platform adaptation
e System enhancement (adding functionality features)

Maintenance Is important

* 60%--80% of overall IT cost

e Software is too expensive to discard after one version

A big picture

* Initial development
e Software evolution
* Software servicing
* Phase-out phase

A smaller picture --- evolution process

-

Change Request

System Release Software Impact Analysis
(Evolution J
System update Release Planning

————— h—_—

Software reengineering

* Redocumenting

e Structure/architecture refactoring
* Programming language translation
* Data reengineering

When to stop supporting a software

When to stop supporting a software

* Business value
* Maintenance expense

Design patterns

*

De&gn Patlerns

-
o
|:::|
=
o
=
)
)
|:::|
=
L
o
o
|:::|
s
—

ONILO WO

231435 !

ord by Grady Booch

What are design patterns

* Solutions to specific problems in OO software design

* 23 patterns in 3 categories
* Creational

e Structural
* Composite

 Behaviorial
 QObserver
* Interpreter

Why are we studying them?

Observer

* One to many relationship
* The many need to know changes in “one” immediately

* Example
* Points & Shapes
* Map & location-based services
* A game character & other game components

Example

* |f a person/subject changes its status, how to let all his “subscriber”
knows?
* What to do when there is only one subscriber?
* What to do when there are multiple subscribers of different types?
* What if new subscribers are added?
 How to make the code easy to maintain and extend?

Class diagram

Subject views * Observer
model
+attach(in Observer) < +update()
- - - | +setState()
.| +getState() AF
ViewOne ViewTwo
; +update() +update()

for each view in views
v.update() :

model.getState();

Example (location, location-related service)

* “location” would be the Subject in previous slide

» “observer” would be the superclass of all the sub-classes that try to
update themselves based on the location information

The benefit of observer pattern

* When new types of observers are added, the prototype and
implementation of the subject class doesn’t need any changes.

Other things to pay attention

* Don’t forget the subscribing and unsubscribing methods
* Pull notification vs push notification

 What if | want to delete a subject

e Can an observer subscribe multiple subjects?

Composite pattern

* Tree hierarchy
* How do you build a tree?

How to build a tree and traverse it?

struct node{
struct node*™ left;
struct node* right;
int val;

int sum(){

How to differentiate leaves and others?

struct leaf{
int val;
int sum(){ return val;}

}

How to accommodate different types of
internal nodes?

* Examples

e struct node or struct leaf?
 Book
* Graphics

Class diagram

«interface»

Component | _

<
+doThis()
AN

I
- Composite
-elements
-elements <>
_ +addElement()
+doThis() +doThis() -

b o= o o =

// Container functionalit:
// for each element
elements[i] .doThis () ;

Apply composite pattern to tree

e “Leaf” in previous slide is tree leaf
e “Composite” in previous slide is non-leaf nodes in a tree

Interpreter

* What is an interpreter
* Language, compiler

* Example

e Boolean expression
» Abstract syntax tree

a&&b || !c

a parser will turn this into an abstract syntax tree, and then an interpreter will evaluate the
tree. How to write a program to do the tree-based evaluation?

How to do addition & subtraction

* How to represent an addition expression?
* Constant + Constant
* Constant + Constant + Constant

* How to represent a subtraction expression?

How to do addition & subtraction

* How to represent an addition expression?
* Tree is a good form

* How to represent a subtraction expression?
* Tree

* The challenge:

* Any node in the above tree could be a constant, an addition expression, or a
subtraction expression, etc.

Class diagram

Client

| AbstractExpression

!

«interface»

+solve(inout Context)

JZaN

l

Context

TerminalExpression

CompoundExpression

+solve(inout Context)

Perform "parent" functionality then
delegate to each "child" element
"Context" is data structure for holding
input and output

