
CS220
Software Maintenance

Definition

• Software maintenance
• The process of changing a software system after it has been delivered

Reasons behind maintenance

• Why delivered software needs change?

Reasons behind maintenance

• Why delivered software needs change?
• Fault repair

• Platform adaptation

• System enhancement (adding functionality features)

Maintenance is important

• 60%--80% of overall IT cost
• Software is too expensive to discard after one version

A big picture

• Initial development

• Software evolution

• Software servicing

• Phase-out phase

A smaller picture --- evolution process

Software reengineering

• Redocumenting

• Structure/architecture refactoring

• Programming language translation

• Data reengineering

When to stop supporting a software

When to stop supporting a software

• Business value

• Maintenance expense

Design patterns

What are design patterns

• Solutions to specific problems in OO software design

• 23 patterns in 3 categories
• Creational

• Structural
• Composite

• …

• Behaviorial
• Observer

• Interpreter

• …

Why are we studying them?

Observer

• One to many relationship
• The many need to know changes in “one” immediately

• Example
• Points & Shapes

• Map & location-based services

• A game character & other game components

• …

Example

• If a person/subject changes its status, how to let all his “subscriber”
knows?
• What to do when there is only one subscriber?

• What to do when there are multiple subscribers of different types?

• What if new subscribers are added?

• How to make the code easy to maintain and extend?

Class diagram

Example (location, location-related service)

• “location” would be the Subject in previous slide

• “observer” would be the superclass of all the sub-classes that try to
update themselves based on the location information

The benefit of observer pattern

• When new types of observers are added, the prototype and
implementation of the subject class doesn’t need any changes.

Other things to pay attention

• Don’t forget the subscribing and unsubscribing methods

• Pull notification vs push notification

• What if I want to delete a subject

• Can an observer subscribe multiple subjects?

Composite pattern

• Tree hierarchy

• How do you build a tree?

How to build a tree and traverse it?

struct node{

struct node* left;

struct node* right;

int val;

int sum(){

…

}

}

How to differentiate leaves and others?

struct leaf{

int val;

int sum(){ return val;}

}

How to accommodate different types of
internal nodes?
• Examples

• struct node or struct leaf?

• Book

• Graphics

Class diagram

Apply composite pattern to tree

• “Leaf” in previous slide is tree leaf

• “Composite” in previous slide is non-leaf nodes in a tree

Interpreter

• What is an interpreter
• Language, compiler

• Example
• Boolean expression

• Abstract syntax tree

a && b || !c

a parser will turn this into an abstract syntax tree, and then an interpreter will evaluate the
tree. How to write a program to do the tree-based evaluation?

How to do addition & subtraction

• How to represent an addition expression?
• Constant + Constant

• Constant + Constant + Constant

• How to represent a subtraction expression?

How to do addition & subtraction

• How to represent an addition expression?
• Tree is a good form

• How to represent a subtraction expression?
• Tree

• The challenge:
• Any node in the above tree could be a constant, an addition expression, or a

subtraction expression, etc.

Class diagram

