UML DISTILLED

THIRD EpITION
UIDE TO THE STANDARD

SOMMERVILLE

“A o/ gt
Y

SOFTWARE ENGINEERING

Modeling

Chapter 3: Class diagrams: the essential
Chapter 4: Sequence diagrams

Appendix 1: an introduction to UML

Chapter 7.1.3 object class identification
Chapter 7.1.4 design models

Software Engineering
A PRACTITIONER'S APPROACH

Design

00
Class Diagram
Sequence Diagram

Object-Oriented Programming, Classes

* Class
* Data + Operation

* Encapsulation
* Polymorphism
* Inheritance

* Enhance modularity!

Encapsulation

* “the packing of data and functions into a single component. The
features of encapsulation are supported using classes. It allows
selective hiding of properties and methods in a class by building an
impenetrable wall to protect the code from accidental corruption.”

Encapsulation

* “the packing of data and functions into a single component. The
features of encapsulation are supported using classes. It allows
selective hiding of properties and methods in a class by building an
impenetrable wall to protect the code from accidental corruption.”

* Implication to design?

Polymorphism

* “to process objects differently depending on their data type or class.
More specifically, it is the ability to redefine methods for derived
classes”

* “the provision of a single interface to entities of different types.”
* Examples

Polymorphism

* “to process objects differently depending on their data type or class.
More specifically, it is the ability to redefine methods for derived
classes”

* “the provision of a single interface to entities of different types.”

* Implication to design?
* Benefits?
* Problems?

Inheritance

* “a mechanism for code reuse and to allow independent extensions of
the original software via public classes and interfaces.”

* Examples

Inheritance

* “a mechanism for code reuse and to allow independent extensions of
the original software via public classes and interfaces.”

* Implication to design?
e Benefits?
* Problems?

Class diagram

* Describes the types of objects in the system
e Describes the static relationships among them

http://en.wikipedia.org/wiki/Class_diagram

How to decide/design classes?

* Data+operation

Components of class diagrams

* Class name

* Class properties
* Attributes
e Associations (could be bi-directional) ——>

visibility name : type [multiplicity] = default {property-string}

* Class operations
Visibility name (parameter list) : return-type {property-string}

* Generalization - 5
* Inheritance (subclass, super class, interface, ...)
 Dependency _ — — — = >

e Constraints {}

Class student{

student CSClass private:
final string name;

- string name = “Bob” {final} ~ | string name = “Intro” {final} int age;

- int age {<150} \d*J > - int capacity [Set enrolledSet<CSClass>; |

- enrolle :
+ Bool register (CSC] : + Bool register (Class c); public:
ool register (ass c); ’ student (string n, int a);

bool register (CSClass c);

—

* *represents unknown number of CSClass property objects of a student object
* If we put a constant number, like 4, here, we should replace the “Set” data structure into Array

Student

String name
Int ID

Int age

int quota
int current

enrolledCourses

Course

int ID
string name
int CapacityCap

- bool stillHasQuotal()
+ void displaySchedule()

+ bool registerClass(Course ¢) // virtual

UndergraduateStudent

bool registerClass(Course ¢);

[

GraduateStudent

bool masterStudent

bool registerClass(Course ¢);

int current

+ bool registerStudent(Student s)
- void addtoEnrolled(Student s)
- void addtoWaiting(Student s)

- bool isFull()

UndergraduateStudent and GraduateStudent are subclasses of Student, and inherit all the attributes and methods of Student.

They both re-implement the registerClass function (polymorphism), and both inherit the super-class' implementation of displaySchedule.

How to turn class diagram to code

* A private attribute > ??
e A * attribute/association 2 ?7?

* Class declaration
* Some attributes may not map to fields

Seguence diagram

* Describes how objects collaborate/interact with each other in one
scenario

Components of sequence diagram

* Participants
e Life-line
e Activation bar

* Message
» Regular calls, self calls

* Creating and deleting object

* Loops and conditionals
* loop, alt, opt

http://en.wikipedia.org/wiki/Sequence_diagram

Sequence diagram example 1

aStudent

an “registerClass(aCourse)” message should be here 7

enrollStudent(aStudent)

aCourse

a "registerClass (aCourse)” method invocation arrow should be hereml

aStudent

stillHasQuota

registerStudent(aStudent)

bool success

aCourse

isFull

Sequence diagram example 2

registerClasses(Course[] courses)

aStudent

aCourse

[for every course]

E

P

stillHasQuota

registerStudent(aStudent)

|
"ﬁismn

=

addtoWaiting

1 | """ addtoEnrolled

Summary

* Class diagram
e Sequence diagram

