
Modeling
Chapter	3:	Class	diagrams:	the	essential

Chapter	4:	Sequence	diagrams

Appendix	1:	an	introduction	to	UML

Chapter	7.1.3	object	class	identification
Chapter	7.1.4	design	models



Design
OO

Class	Diagram
Sequence	Diagram



Object-Oriented	Programming,	Classes

• Class	
• Data	+	Operation

• Encapsulation
• Polymorphism
• Inheritance	

• Enhance	modularity!



Encapsulation

• “the	packing	of	data	and	functions	into	a	single	component.	The	
features	of	encapsulation are	supported	using	classes.	It	allows	
selective hiding	of	properties	and	methods	in	a	class	by	building	an	
impenetrable wall	to	protect	the	code	from	accidental	corruption.”



Encapsulation

• “the	packing	of	data	and	functions	into	a	single	component.	The	
features	of	encapsulation are	supported	using	classes.	It	allows	
selective hiding	of	properties	and	methods	in	a	class	by	building	an	
impenetrable wall	to	protect	the	code	from	accidental	corruption.”

• Implication	to	design?



Polymorphism	

• “to	process	objects	differently	depending	on	their	data	type	or	class.	
More	specifically,	it	is	the	ability	to	redefine	methods	for	derived	
classes”
• “the	provision	of	a	single	interface	to	entities	of	different	types.”
• Examples



Polymorphism	

• “to	process	objects	differently	depending	on	their	data	type	or	class.	
More	specifically,	it	is	the	ability	to	redefine	methods	for	derived	
classes”
• “the	provision	of	a	single	interface	to	entities	of	different	types.”

• Implication	to	design?
• Benefits?
• Problems?	



Inheritance	

• “a	mechanism	for	code	reuse	and	to	allow	independent	extensions	of	
the	original	software	via	public	classes	and	interfaces.”

• Examples	



Inheritance	

• “a	mechanism	for	code	reuse	and	to	allow	independent	extensions	of	
the	original	software	via	public	classes	and	interfaces.”

• Implication	to	design?
• Benefits?
• Problems?



Class	diagram

• Describes	the	types	of	objects	in	the	system
• Describes	the	static relationships	among	them

http://en.wikipedia.org/wiki/Class_diagram



How	to	decide/design	classes?

• Data+operation



Components	of	class	diagrams

• Class	name
• Class	properties
• Attributes
• Associations	(could	be	bi-directional)
visibility	name	:	type	[multiplicity]	=	default	{property-string}

• Class	operations
Visibility	name	(parameter	list)	:	return-type	{property-string}

• Generalization	
• Inheritance	(subclass,	super	class,	interface,	…)

• Dependency	
• Constraints	{}



student

- string	name	=	“Bob”	{final}
- int age	{<150}

+	Bool	register	(CSClass c);
…
…

CSClass

- string	name	=	“Intro”	{final}
- int capacity

+	Bool	register	(Class	c);
…
…

*
- enrolled

Class	student{
private:
final	string	name;
int age;
Set	enrolledSet<CSClass>;

public:
student	(string	n,	int a);
bool	register	(CSClass c);
…

}

• *	represents	unknown	number	of	CSClass property	objects	of	a	student	object
• If	we	put	a	constant	number,	like	4,	here,	we	should	replace	the	“Set”	data	structure	into	Array		





How	to	turn	class	diagram	to	code

• A	private	attribute	à ??
• A	*	attribute/association	à ??
• Class	declaration
• Some	attributes	may	not	map	to	fields



Sequence	diagram

• Describes	how	objects	collaborate/interact	with	each	other	in	one	
scenario



Components	of	sequence	diagram

• Participants
• Life-line
• Activation	bar
• Message
• Regular	calls,	self	calls

• Creating	and	deleting	object
• Loops	and	conditionals
• loop,	alt,	opt

http://en.wikipedia.org/wiki/Sequence_diagram



Sequence	diagram	example	1



Sequence	diagram	example	2

registerClasses(Course[]	courses)

loop
[for	every	course]

alt [full]

[else]



Summary	

• Class	diagram
• Sequence	diagram


