RUP, Agile, XP

Sommerville Book:
Chapter 2.1.2,2.3.3, 2.4, 3.1, 3.3
Pressman & Maxim Book:
Chapter 4.1.2,4.1.3,4.3,5.1—5.4




Administrative stuff

e TA office hours

— Lefan, 2—3:30pm T @ CSIL1

— Yuxi, ??pm Mon/Wed @ CSIL? ??
* Class enrollment
* Warmup project



Software Development Process



Software Development Process

* |n software engineering, a software development
process is the process of dividing software
development work into distinct phases to
improve design, product management, and project
management. It is also known as a software
development life cycle. ---- Wikipedia




Outline

* The problems of waterfall

— How to improve waterfall?

* RUP
— Phases
— (iterative) Activities
— UML
e Agile
— XP



Waterfall model

Requirement

design

implementation

testing

maintenance




What are the problems?

1. difficult to handle changes
2. take long time to deliver
3. expensive to fix errors

4. difficult to estimate/planning



How to deliver faster?



Incremental process

* Produce core products first
* Produce further refinements in follow-up releases



Incremental process

System/information
engineering

Increment 1

Delivery of

Analysis
1st increment

Increment 2 | Analysis Design Code Test Delivery of
2nd increment

Increment 3 | Analysis Design Code Test Delivery of
3rd increment

Increment 4 | Analysis Design Code Test Delivery of
4th increment

Calendar time



Example

e Text editor

e (Class registration system



How to handle changes better?



Evolutionary process

* Spiral model

Fig, Spiral Model



Rational Unified Process



Rational Unified Process

e Basicidea: incremental + iterative

e Phases + workflows

Business
modeling

Req.

Design
Impl.

Test
Deployment

Which workflow happens at which phase?



Business Modelling

Requirements

Analysis & Design

Implementation

Test

Deployment




RUP

What is the product of each workflow?
— Unified Modeling Language

Business modeling + requirement

— Actor and use case diagram
Analysis & design
—> class diagram, sequence diagram, state diagram
Implementation
Testing
Deployment
- deployment diagram



UML examples




Agile

2001



Background

* Planning planning planning

— Airplane’ s control system needs 10 years to develop

* Problems
— Too much document
— Too late code delivery
— Not easy to deal with changes
— Too much bureaucracy
— Hard to finalize design w/o implementation
— Hard to estimate time before design & imp.
— Hard to finish planning (prioritize) w/o estimating time



The Agile manifesto

e http://agilemanifesto.org/




12 key practices

planning game

small releases

metaphor

simple design

testing (customer tests and tdd)
Refactoring

pair programming
collective code ownership
continuous integration

40 hour week

onsite customer

coding standards



The XP process

for each release/iteration (=2 weeks)
review & planning
design
implementation



Planning

* Rogiirament-coetrent
* User stories
— What is it?

— Customer provides ...
— Developers provide ...



Planning

* Rogiirament-coetrent
* User stories

— Whatis it?
e 3” X 5” card with text description

— Customer provides: story, value
— Developers provide: split a story to tasks, cost

— Selection



Example user stories



Design

* Principle — KIS (keep it simple)

* Qutput
— CRC Card (Class-Respopnsibility-Collaboration)



Example (CRC Card)

Responsibilities Collaborators




Example (keep it simple)

Simplicity Generality
int getSize (Vector v){ int getSize (Container c¢) {
return v.size(); Iterator i=c.iterator();
} int size =0;
while(i.hasNext()){
Size++;
}

return size;



Design

* What is the problem of KIS?

e Solution



Design

* What is the problem of KIS?

— Code difficult to maintain in the long term

e Solution

— Code refactoring



refactoring

 What is refactoring?

— Code refactoring is the process of restructuring existing
computer code without changing its external behavior.



Implementation

 TDD (test-driven development)
— Unit tests
— Test suite
— Regression testing & continuous integration

* Pair programming



Implementation

 TDD (test-driven development)
— Unit tests (www.codehunt.com)
— Test suite
* The suite of many unit tests created and maintained over the time

— Regression testing & continuous integration

* Run the whole old/existing test suite at every code commit to
make sure that new code does not violate old code assumption

* Using test suite to replace documentation

* Pair programming



How to end an iteration?



12 key practices

planning game

small releases

metaphor

simple design

testing (customer tests and tdd)
Refactoring

pair programming
collective code ownership
continuous integration

40 hour week

onsite customer

coding standards



Did Agile solve the problems?



Challenges for Agile



Summary

Drawbacks of waterfall
Good practices

— Incremental, evolutionary

RUP

— Separating phases and work-flows
— UML

Agile, XP

— tdd, small releases, ...



Course Project



A few project example

* Proposal examples

* Repository examples
— https://github.com/catherinemoresco/PDFProject

— https://github.com/courageousillumination/deckr
— https://github.com/dyxh/cs220
— https://github.com/marlonliu/DivAssist




Course Project Grading

* Group performance
— 75%
* Individual performance

— Commit log
— Self-evaluation + peer-evaluation

e After milestone 3.b
e After milestone 5



