Performance Analysis for
Parallel Programs

How to estimate the benefit of
parallelization?

* What is the ideal speedup on N machines/cores?

* Why cannot we achieve the ideal speedup?

How to estimate the benefit of
parallelization?

* What is the ideal speedup on N machines/cores?
* NXx

* Why cannot we achieve the ideal speedup?

e Practical reason
e Thread-related overhead
e Non-CPU resource limitation

* Algorithm reason
* non-parallelizable code component

What affect real parallelization efficiency?

e Amdahl's law
* https://www.techopedia.com/definition/17035/amdahls-law

* Critical path
* You can represent a parallel program in a DAG, with an edge representing a
task cannot start until another one finish
* The longest path in your DAG is called critical path

* The length of the critical path determines the execution time of your program
with unlimited number of processors

How to estimate the benefit of
parallelization?

 Amdahl's law
* Critical path

* Load imbalance

* Resource competition

e Data sharing cost (false sharing leads to huge performance lost)
* Synchronization overhead (lock, etc.)

e Other parallelization overhead (i.e., data duplication, work
duplication, and aggregation)

Software bugs

Memory bugs
Concurrency bugs

Memory bug

Memory Layout
Buffer overflow

Uninitialized read

Memory leak

Memory layout

Text segment: store instruction (code)
Data: global/static initialized variable gl sadsets

BSS: global/static uninitialized variable

Heap: malloc

Stack: local variable

uninitialized data

(bss)

initialized data

low address

text

Memory layout (con’t)

int x = 100; //data segment
int main() {

int a =2;//stack

static int y; //BSS segment

int *ptr = (int *) malloc(2*sizeof(int));
ptr[0] = 5; //heap

ptr[1] = 6; //heap

free(ptr);

return O;

Stack buffer overflow

1. Code example; #include "stdio.h"

#include "string.h"

int main(int argc, void ** argv)

{

if(argc<2) return O;
printf("%s is the argument\n",(char*) argv[1]);

char p[10];
strepy(p, argv[1]);

printf("%s is the string p\n", p);
return O;

Stack buffer overflow

2. What is a stack buffer overflow bug:
read/write a buffer in stack beyond the buffer range.

3. Stack buffer overflow:

Return address: next instruction after the function return.
In the example code, strcpy over writes the return address

This overwrite beyonding the array size is a buffer ove -

Consequence:

Invalid instruction: program crash —

Jump to malicious program: hacker attack.

Heap buffer overflow

1. Code example; #include "stdio.h"

#include "string.h”
#include “stdlib.h”

int main(int argc, void ** argv)

{

if(argc<3) return O;
printf("%s and %s are the arguments\n",(char*) argv[1],
(char*) argv[2]);

char* p1 = malloc(10);
char* p2 = malloc(10);
strcpy(pl, argv([1]);
strcpy(p2, argv([2]);

printf("%s is the string 1\n", p1);
printf(“%s is the string 2\n”, p2);
return O;

Heap buffer overflow

2. What is a heap buffer overflow bug:

read/write a buffer in heap beyond the buffer range.
3. Impact of heap buffer overflow:

- Corrupt nearby data

- Crash the program if overflow into invalid program regions

Concurrency bugs
(data races)

Test 1: exact buy milk

public class test2{
staticint x = 0;
public static void main(String argv[]){
testThread t1 = new testThread(); X=0

testThread t2 = new testThread();
t1.start();

t2.start(); L L
o 0? }\N N /{ ==07
t1.join(); Yl h
t2.join();
}catch(Exception e){} X++ X++
System.out.print(x+ " ");
}
}
class testThread extends Thread{ Print(X)

public void run(){
if (test2.x == 0)
test2.x ++;

P CHICAGO

Test 1: exact buy milk

X=0 X=0
- ’?
X 0/\ X==07
Y X==07? Y
"Y \/
4t X++
\/ N
X++
X==07?
Print(X) Print(X)
2 1

@) THE UNIVERSITY OF

CHICAGO

Test 1: exact buy milk

X=0
/\ Data race:
X two operations accessing same
Y X==07 memory
LY . . .
o relative order is undetermined
: at least one is write
X++
Print(X)

@pE-| THE UNIVERSITY OF

CHICAGO

Test 1: Fixing

Print(X)

Bf-| THE UNIVERSITY OF

CHICAGO

Two regions protected by the same
lock cannot interleaving with each
other.

