
Welcome to CS220
Software Construction

October 2nd, 2018
Shan Lu

https://www.classes.cs.uchicago.edu/archive/
2018/fall/22001-1/

Outline

• Technical stuff
– What is software engineering

• What are the goals & challenges

– What is a software engineering process
• Waterfall model

• Administrative stuff
– Who I am

– Components/tasks/schedule of this class

• A brief history of software engineering

My background

• Shan Lu
• JCL 343, shanlu@cs.uchicago.edu

• Office hours: after-class—4:15pm, Tu/Th

– East China → Illinois →Wisconsin→Illinois

– Research
• Software reliability, software efficiency, etc.

– Teaching
• I enjoy discussion

mailto:shanlu@cs.wisc.edu

Our TA / Grader

• Yuxi Chen

– chenyuxi@uchicago.edu

– Office hour: 4—6pm Tu/Th @ CSIL1

• Hussein Elkheshen

– husseinelkheshen@uchicago.edu

– TBD

mailto:husseinelkheshen@uchicago.edu

Your background?

• How many programs have you written?

– What are the sizes of your programs?

• What programming languages do you use?

• How familiar are you with O-O?

Software Construction
Engineering

Software Construction

--- An engineering discipline about all
aspects of software production

Engineering

What do you do to produce
software?

What are the aspects of S.
production?

• Gathering requirements

• Design

• Development

• Testing & debugging

• Maintenance

What is the goal of S.E.?

• What are the criteria for good programmers?

• What are the criteria for good software?

• The goal of software engineering is …

What is the goal of S.E.?

• What are the criteria for good programmers?

– Write good software

– Be on time

• What are the criteria for good software?
– Reliable/correct (few bugs)

– Efficient (run fast)

– Maintainnable

– Good usability

– Good security

• The goal of software engineering is

– Produce good software, within time schedule, within
resource budget

What are the challenges?

What are the challenges?

• Large code sizes

– http://www.informationisbeautiful.net/visualizations/milli
on-lines-of-code/

– Linux Kernel 1.0.0 (1994) 100K+

– Linux Kernel 2.2.0 (1999) ?

– Hubble Space Telescope ?

– Chrome? Firefox?

– Boeing 787?

– Mac OS X Tiger?

– Car software

– healthcare.gov

• Changing requirements

– User, hardware, …

• Large development team (at different geo locations)

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Google

• 15000+ developers in 40+ offices

• 4000+ projects under active development

• 5500+ submissions per day on average

• Single monolithic code tree with mixed language code

• Development on one branch - submissions at head

• All builds from source

• 20+ sustained code changes per minute with 60+ peaks

• 50% of code changes monthly

• 75+ million test cases run per day

30000+

100+

How to …?

• Practices/disciplines

• Tools

Software Construction

--- Practices and tools about

design, development, and maintenance

of software

Engineering

S.E. process

• A sequence of activities that lead to the production
of a software product

• There are many processes proposed

– Waterfall

– RUP (Rational Unified Process)

– Agile
• Extreme programming

Waterfall model

• Activities ➔separate process phases

Waterfall model

Waterfall model phase I

• Requirement & analysis

• Where do we obtain the requirement?

• Should we modify or refine the requirements?

– What should we consider?

• Output

Waterfall model phase II

• Design

• What need to be designed?

• Output

Waterfall model phase II

• Design

• What need to be designed?

– UI

– Module, API interface (architecture design)

– Data structure (component design)

• Output

– Design document

Waterfall model phase III

• Implementation

• Output

Waterfall model phase IV

• Testing

• Output

Waterfall model phase IV

• Testing

• Output

Waterfall model phase V

• Maintenance

• Ratio of cost among phases

Problems with waterfall model

Problems with waterfall model

• Difficult to handle changes (not in model, high cost)

• Error fixing expensive

• Hard to estimate time

More information at …

• Chapter 2.0, 2.1, 2.2.0, 4.1.0, 4.1.1

• Chapter 1.1.1, 2.1.0, 2.1.1

Administrative Stuff

An overview of our schedule

Any student graduating at the end of this quarter?

There are a lot of work to do

• Class

• 1 mini project (due 10/15) 8%

• 1 big programming project 40%
• Many milestones/checkpoints

• Proposal due 10/17

• Weekly Quiz 7%
• First one on 10/9

• Two exams 45%

If you are going to drop this course, do it soon.

What you need to do 1:
lectures & reading

• Lectures

– Tu/Th 2—3:20 am

Links in my slides

What you need to do 2: Quizzes

• ~10 minutes @ every Tuesday lecture

• The 1st quiz is on October 9th (next Tuesday)

• Close-book, close-note

• Cover lectures and project content

• 1 point for each quiz, 7% of your overall grades

What you need to do 3: Project

• Course project

– 7—8 people a group

– The whole process

– 6+ milestones

– 40 % of your final grade

– Grading criteria: 75% group + 25% individual

– There will be peer evaluation

10/17 1 Proposal (2—3 students)

10/30 2 Planning (7—8 students)

11/07 3.a Testing of 1st iteration

11/13 3.b End of 1st iteration

11/20 4.a Testing of 2nd iteration

11/29 4.b End of 2nd iteration

12/04 5 System testing & documentation

12/09 6 Acceptance testing & debugging

What you need to do 4:
warm-up project

• One warm-up project

– Will be released today or tomorrow

– Do it in a group of two people

• It is due on 10/15th

What you need to do 5: Exams

• Midterm exam

– In the lecture on 11/06

– 20% of your final grades

• Final exam

– During the exam week

– 25% of your final grades

• Cover material from class and the projects

Overall Grade

• Curved

• 2018 winter

– A* 25; B* 5; C* 2

• 2017 winter

– A* 19; B* 8; C* 5

• 2014 Fall

– A* 22; B* 14; C* 4

Resources

• CSIL Labs

• TA

– Yuxi Chen, chenyuxi@uchicago.edu

• Piazza!! (will start by the end of this week)

• Feel free to ask me questions in&off class

mailto:hli5@uchicago.edu

A brief history I

• The pioneering era

– No S.E.

– No way to estimate s/w development time

– s.w. is free

• Starting 1960s

• The Software Crisis 1965--1985

– Therac 25 1985—1987

– Morris worm 1988

A brief history II

• 1985 – 2000

– No silver bullet

– OO, design patterns, formal methods, process

• 2000 – present

– Agile

– Model-driven design

– Tools, Program synthesis, verification, …

Current S.E. research

Summary

• What we discussed

– What is software engineering

– What is s.e. process

– Waterfall model

• What you should do/prepare to do

– Check course webpage

– Check piazza

– Quiz

– Mini-project to be released soon

– Project proposal

