
Multics

Background
- ancestor of unix
- very sophisticated monolithic OS with many innovations
- paid attention to security (ring, access control list, …)
- unique virtual memory mgmt
- first hierarchical file system

Virtual memory
general benefit:
 make programming easier
 improve portability
 use large virtual address space on small physical memory
 memory allocation does not need to to be contiguous
specific benefit
 help code/data sharing
 allow calling procedures with only symbolic names (no need to recompile when the
library changes)
 (modern technique: dynamic linking)

Basic segment idea in Virtual memory mgmt
 3 segments (code, stack, heap); each segment’s base and bound information is kept in
register
 problem: a segment could be too big to fit into physical memory; contiguous physical
memory allocation required within segment

basic paging
 page table
 problem: a page is not a natural logical unit as a segment

multics:
 2^14 segments (per process); 2^18 per seg

 How to support segment look up for so many segments?
 Can we use registers? no
 Use segment (descriptor) table
 Is segment descriptor table per process or global? per process
 Same segment could have different segment ID in different processes
 Same segment could be associated with different access privilege in different
processes
 What is in each descriptor in the table?
 (1) The location information of the segment
 (2) The access control information
 It is Operating System who fills the segment descriptor table

General Address
 segID, word number

Instruction addressing mode
 register (segment id, word-number), offset (external)
 procedure base register , offset (internal)

special: indirect addressing mode
 like pointer, the address specified in the instruction is M. The final data D is stored at
location N.
 N can be find at memory location M.
 more levels of indirection is possible.
————

how to share data across segments?

Suppose procedure P (in segment x) tries to use variable D in a different segment.
what are the challenges?
 When P refers to D in its machine code,
 can P directly uses the offset of D in D’s segment?
 no. Because that would force P to recompile everything D’s segment changes.
 Symbolic name of D is used. Operating System will check the symbol table in D’s
segment to figure out the offset of D within its segment at run time.
 can P directly uses the segment ID of D’s segment?
 no. Statically (when P is compiled), no one knows what is the segment ID of D’s
set.
 In fact, in different processes, D’s segment ID is likely different.
 Symbolic name of D’s segment (a path) is used.

The symbolic pair <D’s segment>|<D> is put in the linkage segment of P.
The first time, execution traps into OS. OS uses the path to find D’s segment, check the
access control list to make sure the current process can indeed read/write/execute the
D, OS loads D’s segment into physical memory, OS fills the segment descriptor table,
obtain the segment ID; OS checks D’s segment’s symbol table to find the offset of D;
OS modifies the run-time linkage segment image to replace symbolic names/paths with
segment id and offset.
Future execution will not trap into OS.

The process of OS checking the access control list of a segment, and add that
segment’s descriptor into a process’ segment table is called “make the segment known
to a process”.

————
how to share code

the trick (or unique challenge): how to update the linkage register when control flow
changes from one segment to another. Jump to the linkage segment, instead of the

callee code, first, load the program counter into linkage register.

—
impact: the power of indirection!
====
nucleus
 where microkernel is used
 can child process’ address space overlap?

