NFS
Purpose: sharing of files in a network of non-homogeneous machines; integrated with local FS; easy recovery at the server side
How to use NFS (from a user/local-software perspective)

First: mount
mount a remote directory (not necessary root) to a local directory

Second: access mounted files just as acessing local files

· Different machines can have different views of files/directories (all depending on how each machine mounts)

· Every machine can choose to export some files/directories

Some other important things about NFS:

NFS server is stateless (make recovery easier)

This version of NFS is built upon SUN RPC (using UDP, with unreliable package transportaion)

Package could get lost; just keep sending; NFS is stateless, so (hopefully) executing one request multiple times would not hurt (this is different from Xerox RPC we learned)

VFS interface is proposed in this paper to keep a unified interface for different co-existing Fses

`Normal’ process of files access (refer to UFS, FFS)

The process in NFS (suppose no caching)

Step 1: mount

Mount protocol would handle network protocols, take OS-dependent directory path string;

Client machine does a lot of work behind mount:

Update a local mount table; modify the status of the VNODE of the mounted-to directory (that directory, in the future, will lead to remote directory); mounting information is kept and interpreted by client, so it is possible to mount one remote FS directory upon a remote FS directory (there is no circular issue here, because from client machine’s point of view, there is no circle)

File-handler of the remote directory (the root of the mounted part) will be sent from remote machine to the client; client keeps this file-handler

Step 2: open a file

Client will go through the path; interpret one level at a time;

When we reach a mount point, the remote file-handler (saved from step 1) will be used for furthre/remote look up

lookup (directory-file-handler, “name-of-the-sub-directory”) (return file-handler of the sub-dir.

Use this lookup, one at a time; keep getting file-handlers; until the destination file

Server side: the file handler includes three parts [i-node-number, i-node-generation-number, FS]

How to get i-node-number? (just as what we do in FFS)

Why do we need i-node-generation-number?

(Different from local FS, a file could be closed and i-node reused by the server

while client is still using the file/i-node. Using i-node-generation-number can

help client recognize the problem)

step 3: read/write

client side: send file-handler, offset, data to server

Server side: server will interpret the file-handler

Use the i-node-number to find the i-node block;

Use the i-node-generation to see whether this request is valid;

Check priviledge; use i-node to find data; return

Caching used for performance improvement and consistency guarantee:

Data block caching (3 second valid)

Directory block caching (30 seconds valid)

Attribute cache (NFS protocol like lookup and read will return attribute;

Newly got attributes will update the cached one)

AFS

Purpose: scalable! Homogeneous file-sharing

High level:

· No need to explicitly mount at client side
· There are clear boundary between servers and clients (different from NFS)

· Servers, all together, build up a big files system view, which is shared by all clients

· Require local disk! No kernel modification

The general process of using AFS

Step 1: open a file

The client machine process VENUS will intercept open-system-call; decide `is this local file or remote’; contact a server (through the full path string in AFS-1, through file-id in AFS-II) in case of remote files

On the server side: locate the file; send the whole file to client

Client side: take the whole file, put it in local disk, return a file-descriptor to user-level

Step 2: read/write

Only involve client side (using the file-descriptor)

Step 3: close

Caching (to improve performance)

AFS-1: cache data

AFS-2: cache data, and directory, attribute/status

Note: AFS does NOT change kernel; user-level VENUS ONLY intercept open/close (not read/write); because of that, the whole files are transferred to client.
The problem of the original AFS design (AFS-I)

Performance issue:

1. Too many processes

2. VENUS send the whole path-name to VICE; interpreting the path-name takes huge CPU time on server; operations like re-name/symbolic-link become difficult

More detail: every server in AFS-I keeps a directory tree, every node is a directory name, stub is used to point to the owner of that directory.

The server contacted will go through the tree to finally find the file

3. too many getattr requests

Clients might have already cached the file. However, in AFS-I, it always needs to contact the server using getattr to know whether the cached-version is still valid.

Oprability issue:

1. Because of the complicated tree-structure and because client and server use the full directory path name to communicate, it is very difficult to move directory and rename directories, etc.

2. Hard to calculate quota

AFS-II solution to above problems

1. Use LWP instead of processes

2. Use File-ID, instead of full path name, to communicate between server and client

3. Use volume to group files

4. File-ID includes 3 parts [volume id, node-id inside volumne, uniquifier]

5. On the server side, a simple volume-id (server mapping (database) replaces the complicated tree.

Changing a directory name will not need to update this database.

Moving directory will need to update this database (but simpler than AFS-I)

6. Directory data file maps from name to file-id

7. Client takes over parsing the path

8. FID information cached on client side

9. Client might directory get FID information from own machine; and therefore does not always need to bother server

10. FID is universal, not changed (different from the file-handler)

11. Use call-back function to replace the huge amount of getattr

Consistency:

Flush the whole file at the close of the file

It is possible that one client’s update is completely lost when multiple clients simultaneously modify a block.

This is still said to be better than NFS.

AFS’s unit is the whole file;

NFS is not, which could lead to one file (part of it from client A, part from client B)

This whole-file at once decision affects not just consistency, also performance:

· High latency at the very beginning

· Need large local disk to read large disk

+ more scalable

