
VM
 Starts from IBM VM/370
 definition: "an efficient, isolated duplicate of a real machine"
 Old purpose: share the resource of the expensive mainframe machine
 New purpose: fault tolerance and security; run multiple different OSes on the same
desktop; server consolidation and performance isolation, etc.

 type 1 vmm: vmm running on bare hardware
 type 2 vmm: vmm running on host os

Virtualization tasks
(isolate, secure, fast, transparent …)

1. cpu virtualization
How to make sure privileged instructions (e.g., enable/disable interrupts; change
critical registers) will not be executed directly
2. memory virtualization
OS thought they can control the whole physical memory. No!
3. I/O virtualization
OS thought I/O devices are all under its own control. No!

Problems of X86
1. Some privileged instructions do not trap; they just fail/change-semantic silently.
2. TLB miss will be handled by hardware instead of software

Categories of X86 virtualization
Full-virtualization (VMWare)
 No change to guest OS
 Use binary translation to change some instructions (privilege instructions or all OS
code) on the fly
Para-virtualization (Xen)
 Change guest OS to improve performance
 Rewrite OS; replace privileged instructions with hypercalls
 Many other changes

Disco
On MIPS
DISCO directly runs on multi-processor machine; Oses run upon DISCO
Goal: use commodity OSes to leverage many-core cluster

VMM runs in kernel mode
VM OS runs in supervisor mode
VM user runs in user mode
Privileged instructions will trap to VMM and be emulated

CPU virtualization
 No special challenge
 (seemed that all privilege instructions will trap)
 VMM maintains a process-table-entry-like data structure for each VM (virtual PC)
(including registers, states, and TLB content (used for emulation …)).

Memory virtualization

 virtual address --> physical address (the one in guest OS page table) --> machine
address (the "real" address pointing to physical memory location)
 tlb: virtual --> machine
 tlb miss: interrupt to VMM
 VMM --> guest OS: guest OS goes through page table, finds out the physical page
number, tries to fill TLB
 (TLB-filling is a privileged instruction; guest OS executing it from less-privileged level will
lead to interrupt)
 trap to VMM: VMM takes the physical page number, looks up "pmap", find the matching
machine page number, get the <virtual-page-number, machine-page-number> entry, fill
the TLB

- pmap maps physical page numbers to machine page numbers, one per virtual machine

- TLB is flushed at every context switch, because …

- to speed up, VMM keeps software TLB, so that it does not need to ask guest OS for
physical page number every time during TLB miss.

The memory virtualization challenge on x86:
 hardware handles TLB misses and looks up page table.
 so, there has to be a page table that contains virtual-to-machine translation for hardware
to look up
 solution:
 1. keep a shadow page table that keeps virtual-to-machien translation; keep the OS
page table read-only, so that every OS updates to page table will trap to VMM and VMM
can update shadow page table (VMware solution)
 2. modify OS so that OS does not directly update its page table; instead, OS calls
hyper-call and asks Xen to update page table (Xen's para-vritualization solution)

