
Static Branch Frequency and Program Profile Analysis
Youfeng Wu

wu@sequent,com

Sequent Computer Systems, Inc., D2-798

15450 S.W. Koll Parkway

Beaverton, OR 97006-6063

Abstract: Program profiles identify frequently executed
portions of a program, which are the places at which opti-
mization offer programmers and compilers the greatest
benefit. Compilers, however, infrequently exploit program
profiles, because profiling a program requires a programmer
to instrument and run the program. An attractive alterna-
tive is for the compiler to statically estimate program pro-
files.. This paper presents several newtechniques for static
branch prediction and profiling. The first technique com-
bines multiple predictions of a branch’s outcome into a pre-
diction of the probability that the branch is taken. Another
technique uses these predictions to estimate the relative exe-
cution frequency (i.e., profile) of basic blocks and control-
flow edges within a procedure. A third algorithm uses local
frequency estimates to predict the global frequency of calls,
procedure invocations, and basic block and control-flow
edge executions. Experiments on the SPEC92 integer
benchmarks and Unix applications show that the frequently
executed blocks, edges, and functions identified by our tech-
niques closely match those in a dynamic profile.

Keywords: compiler optimization, program profile,
Dempster-Shafer theory, performance evaluation, static pro-
gram analysis.

1. Introduction
A compiler improves a program by applying correct

and profitable optimizations — which do not change a pro-
gram’s semantics and reduce its running time.
Optimization correctness has received more attention than
profitability, because incorrect optimizations affect a pro-
gram’s result, but unprofitable optimization merely slows
the program. Recently, however, the advent of ambitious
optimizing compilers and the myriad opportunities pre-
sented by parallelism have increased the range of optimiza-
tion available to a compiler and, consequently, also in-
creased the difficulty of choosing an appropriate one. In
particular. increased instruction-level parallelism leads to
more speculative execution, which requires a compiler to
accurately assess a program’s likely path. More generally,
to select a profitable optimization, a compiler must predict

Permission to co y without fee all or part of this material is
igranted provided t at the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy othetwise, or to republish, requires a fee
and/or specific permission.
MICRO 27- 11/94 San Jose CA USA
0 1994 ACM 0-89791 -707-3/94/001 1..$3.50

James R. Larus

larus@cs.wise.edu

Computer Sciences Department

University of Wisconsin–Madison

1210 West Dayton St.

Madison, WI 53706

how often portions of a program execute and use these fre-
quencies to model the costs and benefits of alternative op-
tirnizations [Chen-92]. This paper addresses the first step
by showing that a compiler can accurately estimate the rela-
tive execution frequency of portions of a program by stati-
cally predicting both branch frequencies and a program pro-
file.

A profile reports the number of times that a basic block
or control-flow graph (CFG) edge executes. A profile typi-
call y is reported in absolute values — how often a statement
executed— but is mainly used as a relative measure to com-
pare the execution frequencies of portions of a program.
Most profiles result from dynamically counting events dur-ingElprogram’sexecution [Ball-92]. Dynamic pro~lling

produces accurate information about a single program exe-
cution, but it requires programmer intervention. A pro-
grammer must instrument the program with measurement
code— either with a compiler option [Graham-83] or a sepa-
rate tool such as pixie or qpt [Ball-92] — then run the pro-
gram with appropriately-chosen input data. Finally at this
point, the programmer can compile the program with the
benefit of profile information. As the program changes,
this process repeats. Another drawback of dynamic profil-
ing is increased execution time, which can affect the behav-

ior of real time and reactive systems.
An alternative is static profiling, in which a compiler es-

timates execution frequencies (not absolute counts) with
static program analysis. A static profile eliminates the
drawbacks of dynamic profiling— if it accurately captures a
program’s dynamic behavior. Recent work suggests that
static analysis can predict dynamic program behavior.
Fisher and Freudenberger [Fisher-921 observed that many
programs’ dynamic branching behavior is independent of
their input data. Ball and Larus developed a simple algo-
rithm that statically predicts the outcome of a conditional
branch with good accuracy [Ball-93]. Wagner et al. usedl
simple estimates of branch probabilities to compute static
profiles [Wagner-94],

This paper improves on Wagner’s work in several ways,,
We present a new algorithm for statically estimating the
probability that a branch is taken. This algorithm uses the
Dempster-Shafer theory of evidence to combine several pre-

dictions of the outcome of a branch into an estimate of the
frequency with which the branch is taken. This paper
makes its initial predictions based on Ball and Lams’s

heuristics. However, the same algorithm can also combine
several dynamic profiles, without introducing a bias for
longer running executions. We also present new and more
efficient techniques for calculating intro-procedural (local)

and inter-procedural (global) block execution frequencies,
local and global branch probabilities, and function call and
invocation frequencies.

Tomeasure the effectiveness of our static profiles, we
compared them against dynamic profiles of the SPECint92
C benchmarks and several Unix applications. We used
Wall’s weighted-matching technique [Wail-91] to evaluate
the two profiles. As an example, our profiles identified the
blocks in the group of the 20% most frequently executed

(dynamic) blocks that accounted for 82% of this group’s
counts. By contrast, Wall’s heuristics (on a different set of
programs) identified the blocks that accounted for approxi-
mately 50% of this group’s executions. Similarly, our
technique accounted for 69% of the intra-procedural edge fre-
quencies, 77% of inter-procedural block frequencies, 79% of
global edge frequencies, 85% of global function invocation
frequencies, and 72% of global function call frequencies (of
the top 20% of each group). These experiments show that
our technique can identify the most heavily executed por-
tions of programs.

The paper is organized as follows. Section 2 discusses
related work. Section 3 outlines Ball and Larus’s heuristics
and describes how we use Dempster-Shafer theory to com-
bine branch probabilities. Section 4 shows how to obtain
intra-procedural block and branch frequencies. Section 5
presents an algorithm to estimate function call and invoca-
tion frequencies. Section 6 shows how to obtain inter-pro-
cedural block and edge frequencies. Section 7 presents the
performance results. Section 8 summarizes the paper and
points out future directions. Appendix A contains a small,
complete example to illustrates the algorithms.

2. Related Work
Profiles can guide a programmer or compiler to the most

heavily executed portions of a program, which are typically
the places at which optimizations produce the greatest bene-
fits. For example, branch probabilities can guide instruc-
tion generation and scheduling to reduce stalls on pipelined
processors [Fkher-81, Hank-93]. Block and function execu-
tion frequencies can identify program bottlenecks during op-
timization [Chang-91] or assist in performance analysis
[Sarkar-89]. Branch and function call frequencies help order
code for instruction scheduling [Hwu-89, McFarling-89] or
enhance memory reference locality [Pettis-90, WU-92].

Most previous work on profiling studied techniques for
decreasing the cost of profiling or building better tools.
For example, Graham et al. [Graham-83] describe a hierar-
chical program profiler (gprof), which accounted for proce-
dure calls. Sarkar [Sarkar-89] showed that a program-depen-
dence graph can reduce the number of points at which exe-
cution frequency must be counted during profiling. Ball and
Larus [Ball-92] identified a minimal size and cost set of
points at which to record dynamically frequency. While
this prior work focused on dynamic program profiling. this
paper describes techniques for static profile estimation.

Symbolic complexity analysis attempts to produce an
expression relating a program’s running time to its input
[Hicky-88, Huelsbergen-94]. It is far more ambitious than
the work in this paper, which merely predicts an ordering of

the execution frequency of program components, rather than
producing absolute estimates of their frequencies.

Wall studied the problem of predicting program behavior
based on static analysis [Wall-91], His heuristics were
much simpler than those in this paper. For example, to
predict basic block frequencies, he tried four heuristics: the
block’s loop nesting depth, a combination of loop nesting
depth and the distance to a call graph leaf, the number of
call sites for the containing function, and a combination of
the loop nesting depth and call sites. These heuristics,
which did not consider details of a program’s control-flow
graph produced far less accurate predictions than the heuris-
tics in this paper.

This paper builds on earlier work on static branch predic-
tion, most notably Ball and Larus’s heuristics and mea-
surements [Ball-93]. We extend their techniques to predict
branch r)robabilities. not iust branch direction. and shows
how probabilities ca;l be &ed to estimate the frequencies of
basic blocks and edges.

Wagner et al. [Wagner-94] independently developed a
static profile technique similar in several respects to the one
in this paper. They predict the outcome of conditional
branches by applying a subset of Ball and Larus’s [Bail-93]
branch prediction heuristics to programs’ abstract syntax
trees (which allowed them source-level information) and
converted these predictions into branch probabilities with a
fixed weighting of 80% for the predicted edge and 20% for
the other edge. Our approach, by contrast, works both for
AST and lower-level representations that lack semantic and
syntactic information. In addition, our Dempster-Shafer
technique (Section 3) answers the open question raised in
Wagner’s paper of how to convert branch predictions into
branch probabilities, Our probabilities had an unweighed
standard error 0.7-15.970 lower than their fixed weighting.
We reran our experiments (Section 7) with their 20/80%
probabilities, which produced roughly as accurate estima-
tions for local blocks and edges, but less accurate profile es-
timations for global block and edge frequencies and proce-
dure calls and imrocations.

Wagner also presents three techniques for estimating pro-
files from branch probabilities, the best of which is similar
to the technique (Sections 4 and 5) of this paper, which was
originally described by Ramamoorthy [Ramamoorthy-65].
They used Ramamoorthy’s formulation of the problem as a
set of linear equations and solved it with sparse matrix

techniques, which have a worst case O(nj) running time and
do not handle non-terminating programs. We solve directly
for profile frequencies, with an elimination algorithm that

has worst case O(n-) running time and easily handles non-
termination.

3. Branch Prediction and Probability
A branch predic~ion algorithm predicts if a branch will be

taken (a yes–no, binary decision), assuming control reaches
the branch’s block. A branch probability is an estimate of
the likelihood (a value between O and 1) that a branch will
be taken. A block or branch frequency is a measure of how
often a block is executed or a branch is taken. For exam-
ple, in the following code:

bl : if (condition I

2

b2 : statement 1;

b3 : else statement 2;

a branch prediction might claim that branch bl +b2 is taken

and branch b1+b3 is not taken. A probability estimate

might predict that branch b1+b2 istaken with probability

0.81 and branch b1+b3has probability 0.19. Furthermore,

a branch frequency estimate might find that block b] exe-

cutes 80 times and consequently branches to block b2 65

times and block b3 15 times.

3.1 Branch Probabilities
Our most basic result is a new technique for predicting

branch probabilities. Our work starts with Ball and Lams’s
branch prediction heuristics [Ball-93]. By viewing each
heuristic prediction as a binary experiment, we approximate
the probability of a branch being taken by the frequency of
a correct prediction. In other words, if a heuristic’s correctly
predicts that a branch is taken M of N times (and N is large
enough), then the observed probability of taking the branch
is M/N. Ball and Larus measured, on a large number of
programs, the frequency of correct predictions (hit rate) for
each heuristic [Ball-93]. We use their numbers. If a heuris-
tics, with a hit rate of R, predicts a branch is taken, we
claim that the probability of taking the branch is R.

Although our measurements come from a different architec-
ture and compiler than their heuristics, the published hit
rates produce good results.

This section review Ball and Larus’s branch prediction
technique [Ball-93] and describes our algorithm for predict-
ing branch probability. Their techniques uses a small col-
lection of tests of local program characteristics. The first
heuristic applies to branches controlling loop execution:

● Loop branch heuristic (LBH). Predict as taken
an edge back to a loop’s head. Predict as not taken an

edge exiting a loop .1

The following four heuristics analyze the branch compari-
son and CFG successor for non-loop branches:

● Pointer heuristic (PH). Predict that a comparison
of a pointer against null or of two pointers will fail.

● Opcode heuristic (OH). Predict that a comparison
of an integer for less than zero, less than or equal to
zero, or equal to a constant, will fail.

● Guard heuristic (GH). Predict that a comparison in
which a register is an operand, the register is used be-
fore being defined in a successor block, and the succes-
sor block does not post-dominate will reach the succes-
sor block.

● Loop exit heuristic (LEH). Predict that a compar-
ison in a loop in which no successor is a loop head
will not exit the loop.

The following four heuristics analyze CFG successors:

● Loop header heuristic (LHH). Predict a succes-
sor that is a loop header or a loop pre-header and does
not post-dominate will be taken.

I we ~ePara~ed&ll and LWUS’S 100p branch heuristic into the LooP

Branch Heuristic (LBH) and Loop Exit Heuristic (LEH). This allowed
LEH to be combmed with non-loop heuristics

●

●

✎

Call heuristic (CH). Predict a successor that con-
tains a call and does not post-dominate will not be
taken.

Store heuristic (SH). Predict a successor that con-
tains a store instruction and does not post-dominate
will not be taken.

Return heuristic (RH). Predict a successor that
contains a return will not be taken.

Probability
Heuristics of taking

branch

Loop branch (LBH) 88 %
Pointer (PH) 60 %
Call (CH) 78 %
Opcode (OH) 84 ~0

Loop exit (LEH) 80 %
Return (RH) 72 %
Store (SH) 5570
Loop header (LHH) 75 Yo

Guard (GH) 62 %

Table 1. Branch pr-obability predicted by Ball-Larus

heuristics.

When a heuristic predicts exactly one successor of a
branch as taken, the heuristic applies to the branch. If a
heuristic applies to a branch and the predicted taken branch
is actually taken, the heuristic /tits. The percentage of pre-
dictions that hit is the heuristic’s hit rate. We can treat a
hit as the successful outcome of a binary experiment. By
repeating the experiment N times, we obtain M (M s ~
true outcomes and N - M false outcomes. If N is reason-
ably Iarge, the hit ratio M/N approximates the probability
of a successful outcome. A fundamental insight of this
work is that a heuristic’s hit rate is a good estimate of the
probability that the predicted branch will be taken at run
time. Table 1 lists Ball and Larus’s hit rates. For exam-
ple, when heuristic PH applies to a branch, we claim that
PH predicts that the branch will fail 60% of the time.

3.2 Combining Predictions
Typically, several of Ball and Larus’s heuristics apply to

a branch. They predicted a branch’s outcome with the first
heuristic–from a pre-cornputed, static ordering– that ap-
plied to a branch and disregard the other heuristics. We use
a new algorithm. based on the Dempster-Shafer theory of
evidence [Shafer-761, to combine probability predictions of
all applicable heuristics into a stronger probability esti-
mate,

Combining probabilities from several heuristics can pro-
duce a result that is more accurate than the individual esti-
mates. Ball and Larus combine heuristics by selecting the
first applicable one from the sequence: PH. CH. OH, RH.
SH, LHH, GH. This approach worked well for branch pre-
diction, which only produces a hinary outcome. For branch
probabilities, however, ordering throws away useful infor-
mation. For example, in the following code:

if(l.:fl) then x =: y;

else {X=1; ret,~rn; ;

both OH and RH apply. OH suggests that the else-branch
is taken, but RH claims that the then-branch is taken.
Ordering resolves the conflict by ignoring RH, This rea-
sonably predicts the else-branch, but it results in a 84%
probability for this branch. Intuitively, the negative evi-
dence from RH should reduce the probability.

Dempster-Shafer theory [Shafer-76] provides a mathemat-
ical technique for combining evidence of this type into a
prediction of the probability of an outcome. It starts from a
basic probability in the range [0,1] . This value is the de-
gree to which evidence supports a hypothesis. For branch
probability estimation, the hypothesis is: “branch b is
taken” or “a branches other than b is taken (b is not taken).”
The evidence is that a heuristic predicts the branch.

If more than one heuristic supports or denies a hypothe-
sis, Dempster-Shafer theory provides an elegant way to
combine basic probabilities. Assume an event has a set of
k exhaustive and mutually exclusive possible outcomes A =

{Al, A2, Au. Each subset of A has a corresponding

hypothesis that the events in the subset occur. A piece of
evidence assigns a value in [0, 1] to every hypothesis
(subset of A), so the values for the evidence sum to 1.
This value indicates the likelihood that the event occurs.
The empty set is assigned O. This assignment is called a
basic probability assignment (denoted by function m). For
example, a branch b -+ {bl, b2, .,., b~ has k exhaustive

and mutually exclusive outcomes A = {bI, b2, b~. If

a heuristic predicts the probability of taking bi is p and the

probability of not taking bi is 1- p, we get the following

basic probability assignment: tnl({bi}) = p and mI(A -

{hi}) = 1- p.. If another heuristic predicts the probability

of taking bi is u, we get another basic probability assign-

ment: m2(<bj}) = v and m2(A - {bj}) = 1- v.

Let m z and m2 be two basic probability assignments.

The Dempster-Shafer algorithm computes a new combined
assignment, denoted ml @ m2, that combines the evidence

from both assignments. For a subset B of A:

>m I (X)m2(Y)
ml @m2 (B) =

~ml (U)m2(W)#- —
where X and Y run over all subsets of A whose intersection
is B and U and W are subsets of A with at least one ele-
ment in common. To continue the example from above,
when bi = b~ (i.e. the two heuristics predict the same out-

come) only the subsets {b~ and A - {b~ have non-zero ba-

sic probabilities because all other subsets, S, have nLz(S)

and m2(S’) equal to zero. To find the combined basic proba-

bility, notice that ml({bl})m2({bl}) produces ,LLV, and for all

other subsets X and Y, if their intersection is {b I}, then

ntI(X)m2(Y) is zero. Furthermore, ml(A - {b,}) m2(A -

{bJ) =(1 - [L)(1 - v), SO:

In this case, ml 69 m2(’{bij) ~ ml({b,j) if and only if

m2({bl]) >0.5 and ml &t2({bJ) > m2({b~) if and only if

/nl({bi}) >0.5. This shows that an estimation that bi oc-

curs less than half of the time lowers the probability of an-
other prediction of the same outcome.

Consider the case when bi # bj (the heuristics predict dif-

ferent outcomes). If k = 2, we have the same case as bi =

bj’ by using b]’ = A - {bj}. If 2< k

ml @ m2({bl]) .M2!?l
I-(,LV

ml @ n12(A - {bi, b]]) .QzxE&!)
l-pv

In this case, ml @ m2({bi]) > m~({bl]) if and only if

ml({b~) = 1 or O. This shows that a contradictory predic-

tion lowers the probability unless one prediction is certain
(1 or O).

As a concrete example, suppose b-+{bl, b2} initially (in

the absence of a prediction) has an equal probability of
branching to bl and b2 (ml({bl}) = m1({b2}) = 0,5). If a

heuristic predicts that b+ b 1 occurs 70’% of the time

(m2({b1}) = 0.7 and m2({b2}) = 0.3), the combined proba-

bilities are:

Now suppose another heuristic estimates that b+ b 1 is

taken 60% of the time (m3({b1}) = 0.6 and m3({b2}) = 0.4).

The estimate then becomes:

m1@m2@m3({b1}) = o 7X~’~~~~Xo 4 = 0.778
. . . .

ml@m2@m3({b2}) = o 7X~”~~~~Xo 4 = 0.222
. . . .

The second heuristic increased the probability that bl is

taken from 0.7 to 0.778. This process can be repeated, in
any order, to incorporate other heuristics as the operator @
is associative.

Algorithm 1 computes the probability for two-way
branches by combining predictions from all applicable
heuristics. For mttltiway (>2) branches, it assigns equal
probability to each outcome since no heuristics predicts
these branches. If heuristics are developed for multiway
branches, the algorithm can use the general Dempster-
Shafer algorithm (omitted here) to combine the basic branch
probabilities.

A similar algorithm can also combine the probabilities
from dynamic profiles. A common way to combine these
profiles is to add counts for each block, which weights a
profile in proportion to its execution length. By first con-
verting counts into predictions of branch probabilities,
Dempster-Shafer theory can combine profiles without this
bias.

2 Theoretical the absence of a prediction should assign the
“unknown” probabi;ties to a hypotheses:

wrl({bl. bzl) = 1, ml({bll) = 0. tnI({b2}) ==0.
But this treatment makes propagation of branch frequencies more

difficult. Instead, we reasonably assume equal probabilities when a
prediction is unavailable

Input: Control-flow graph G for function. Eachnode is a basic
block and an edge b, +b, represents a branch from block b, to b;.
For each heur~stlc’ H: the predicted taken probability i’s
ru,@<rob(H), and the not taken probabdlty is ticjt_tukeli~rc~J(H).

Output: Assignmentof a branchprobabdltyprobity-+,) to each
ed~e b;+b; in G.

.

Process:
foreach block b with n successors

and m back edge successors (m s n) do
if n == O then \/NO .$UCC~.5.SOrS

continue;
else if b calls exito then

foreach successors of b do
prob(b-+s) = 0.0; II Never reach successors

else if m >0 and m < n then
II Botlz back edger and exit edges
foreach back edge successor s of b do

pmb(b+s) = tukerr~rob(LBH) I m;
foreach exit edge successors of b do

prob(b-s) = nof_taken$rob(LBH) I (n m):
elseifm>Oornz2 then

1/ Only back edge~. or not a 2-wYJy bra)rclz
foreach successor s of b do

pmb(b+s) = 1.0 /n;
else II Notte of the above

lets] and S2 be the successors of b
protr(b+sl) = prob(b-sz) = 05
foreach heuristic H that applies do

Assume H predicts (b+s 1) taken,

and (b+ s2) not taken

d = prob(b-s]) x faketz<rob(H)

+ prob(b~sz) x no_tuke/!~rob(H):
prob(b+s]) = prob(b+s 1) x taken~rob(H) /d:
pi-olr(b-sj = prob(b-sz) x .ot_tuken~rob(H) Id: _

Algorithm 1. Calculate branch probabilities.

4. Local Block and Edge Frequency
After computing branch probabilities, we calculate intra-

procedural (or local) basic block and CFG edge fiequerlcies

by propagating branch probabilities over a single proce-
dure’s control-flow graph. The frequency of a branch bi ~

bj, is the execution frequency of block bi times the branch

probability of b, ~ b, The execution frequency of block bi

is the sum of the frequencies of incoming edges. Let

bfreq(bl) be the execution frequency of block bi and fieq(bt
- bj) be the edge frequency of bl ~ bj. The following floiv

equations state this relation precise] y [Ramamoorthy-65]:

bfreq(bl) =1 (fbl is the entry block)

bji-eq(bl) = b ~~~$~-bi) (otherwise)

P

jieq(bidbj) = bfieq(bi) prob(bi~bj)

For a flow graph without cycles, these equations can be
solved top-down in a single pass. When a graph contains
cycles, these equations are mutually recursive and must be
solved by finding a least fixed point. An algorithm de-
scribed in [Forman-81] solves the equations, but it is slow
and. more seriously, does not handle non-terminating flow
graphs. For example, the following loop:

for (;;) {
do_a_few_t lmes_then_exIt () ; }

results in a flow graph that appears to loop forever, which
Forman’s algorithm cannot solve. Below, we present an
elimination algorithm that is fast and handles non-terminat-
ing, reducible flow graphs.

I ,n_freq(tJ

(a)

1.0

(b) (c)

Figure 1. Loops with single loop entries.

Consider first a structured flow graph (e.g. Figure la) in
which a single loop head dominates a loop body (this could
be a single loop or nested loops that share the same head).
In the flotv graph of Figure la. block b. is the loop head,

infieq(bo) is the total frequency of the edges entering bo,

and bllocks bl, b2, bk contain back edges leading to bo.

Since b. is the only entry to the loop, we can propagate

bfreq(bo), without recursion. to bl, b2, bk, and obtain

bfreq(bl) = b~eq(bo)ri. for i = 1, k. where ri is the proba-

bility that control passes from bo to bi. From this, we

find:
k

bfreq(bo) = in_freq(bo) + ~ freq(bL~bo)
i= 1

k

= itl~eq(bo) + ~(bj?eq(bl)prob(bi~bo))
i=l

k

= irl~eq(bo) + ~(bfieq(bo)riprob(bl ~bo))
i=]

k

= itl>eq(bo) + bji-eq(bo) ~ (rprob(bl +bo))
i=]

Let

Pi = ri prob(bl-+bo)

and if O s cp(b(j < 1, we have:

bjkq(bo) = itl~eq(bo) + bfieq(bo) cp(bo)

irl.j-eq(bo)——
I-cp(bo)

In this derivation, pi is the probability that control goes

from b. to b. through block b,. and cp(bo) is the prob-

ability along all paths that control goes from bo to bo. We

call cpfbo) the cyclic probability of block bo. To find the

cyclic probability. first assume b. executes once and
propagate branch probabilities from bo to all back edges

leading to bo, and sum the probabilities of the back edges.

Applying this formula to the examples in Flgtrre 1, we
have:

1
bfreq(bo) = 1.0.5 x0.s8-0.5x0.88 = 8.33

for the flow graph in Figure 1b, and:

1
bfieq(b~) = 1-() 88-() &f3xfj. 12-O.88X0. 12’0.12 = 578.70

. .

for the flow graph in Figure 1c,3
For a loop that terminates, cp(b~) <1. If the loop ap-

pears not to terminate, we could have cp(bo) z 1. When

this happens, we can easily set cp(bo) to a value (less than

1) that represents the maximum cyclic probability.
Now consider a flow graph with two loop heads, one of

which is nested in the other (Figure 2). For this flow
graph, we first find the cyclic probability of the inner loop
and then treat the outer loop the same manner as a single-
level loop, except that we use the formula

bfieq(binner) =
iiz~eq(bin,ler)

I -cp(bltlner)

to find the frequency of the inner loop head, where bl)lner is

the head block of the inner loop structure and cp(blnller) is

binner’s Cyclic PrObabW.

Figure 2. A two-head nested loop structure.

If a flow graph is reducible. every loop head dominates
the blocks in the loop. The method described above works
for these flow graphs. We visit the inner-most loop first
and use the cyclic probabilities of inner loops to compute
frequencies for the outer loops.

Algorithm 2 calculates the edge frequency of control-flow

graph edges and the execution frequency of blocks.
Although it assumes that the flow graph is reducible, the
algorithm terminates for non-reducible flow graphs, al-
though the resulting estimates may be less accurate.

3 In general. for k properly nested loops that share the same loop
head, in which the back edge probabilities are p and the exit edge
probabdities are 1 p, we can verify that

1
k

k-I ‘ (+)

] -P* 2(1-p)i
,=

Input: Control-flow graph G for function, In which each node IS a
basic block and each edge bl~b, represents a branch from block b;
to block b,, Each edge 12147, has’ branch probability prob(bl-+,)

Output: Assignments of frequency jreq(bt+bi) to edge b[+hj
and bfreq(b) to block b.

Subroutine: propagate_freq(b, head)
if b has been visited then

return;
II 1, jlrrd bfreq(b)
if b == head then

bj$-eq(b) = 1;
else

foreach predecessor bp of b do
if bp is not visited and (bp~b) is not a back edge then

return:
bfreq(b) = O,
cyclic_probabihty = O;
foreach predecessor b of b do

$if (bpeb) IS back e ge to loop head b then
cyclic_probabillty += back_edge_prob(bp-+b):

else
bfreq(b) +=~req(bp-b):

if (cyclic_probabllity > 1 - epsilon) then
cychc_probabillty = 1 - epsilon:

bfleq(b)
bfieq(b) = l-cyclic_probability;

//2. calculate the,fiequerrc[es ~f b’s out edges
mark b as vmted
foreach successor bi of b do

freq(b~bi) = pr~b(b~bi) x bfr~q(b);
1/ update back_edg~>r<]b(l]-bi] so u
II can be used by outer loops to calculate
/1cyclic>robabihty of uzrrerloops
if bi == head then

back_edge_prob(b-bl) = prob(b+bl) x bfieq(b):

1/3. propagate to ~uccessor blocks
foreach successor bi of b do

if (b+bi) is not back edge then

propagate_freq(bi, head);

Process:
foreach edge do

back_edge_prob(edge) = prob(edge);
foreach loop from inner-most to out-most do

let head be the head block of the loop
mark all blocks reachable from head as not visited
and mark all other blocks as vis]ted.
propagate_freq (head, head);

Algorithm 2. Compute block and. edge >equencies.

5. Function and Function Call Frequency
The local block frequencies enable us to calculate the lo-

cal frequency of calls on other functions. We then propa-
gated these call frequencies along call-graph edges to com-
pute inter-procedural (or global) function invocation fre-

quencies. Finally, we obtain global basic block and edge

frequencies by multiplying each a local frequencies by its
procedure’s global invocation frequency.

The local call frequency is the number of times that f

calls g, assuming one invocation of j. This information is
readily available from the block frequencies computed pre-
viously. If function f calls g in blocks bl, .. . bk, the local

call frequency off calling g is the sum of the execution fre-
quency of these blocks, The global call frequency of func-
tion f calling g is the number of times that f calls g during
all invocations off, which is just the product of the local
call frequency times the global invocation frequency of J

Computing global call frequencies from local call fre-
quencies is similar to propagating branch probabilities in a
flow graph. Assume cfreq(f) is the number of times that

6

function~is called, lfreq(jg) is the local frequency of~call-
ing g, and gfr-eq(~,g) is the global frequency of ~ calling g.
The flow equations relating local and global call frequencies
are:

cfieq(f) = 1 (f is main fanction)

c~eqfl = ~@-#Pfi (otherwise)

gfreq(~g) = ljreq(’fg) cjieq(f)

A call graph is not reducible when a recursive cycle in
the graph can be entered at several points. To handle these
cycles, we modify the edge frequency propagation algorithm
by treating each node that is the target of a back edge as a
loop head and, when calculating the cyclic probability for a
loop head that is not the entry function, not using its de-
scendants’ cyclic probabilities, The modified algorithm
(Algorithm 3) propagates call frequencies.

6. Global Block and Edge Frequencies
To obtain global block and edge frequencies, multiply

each local block or edge frequency by the execution fre-
quency of the function that contains the block or edge.

7. Experimental Evaluation
To measure the effectiveness of our static profile tech-

niques, we compared static and dynamic profiles of the
SPECint92 C benchmarks and a several simple Unix appli-
cations. We ran the experiments on a Sequent S2000/750
system with i486 processors and the Sequent DYNIX/ptx C
compiler Version 2.1. which supports dynamic function
call profiling and static branch and function call frequency
prediction. We added dynamic branch profiling to the com-
piler and added the heuristics to its static analysis.

To measure the effectiveness of our techniques, we used
Wall’s weighted and urtweighted matching method [Wall-
911, Consider block frequencies as an example. Assume
that a program contains N blocks and we have a list of
blocks from static analysis and another from dynamic pro-
filing, both sorted by frequency. To compute the weighted
match score of the top m static blocks, count the number of
these blocks that occur in the top m dynamic blocks. If k
(ks m) blocks occur, the ratio of sum of the static frequen-
cies of these k blocks to the sum of the dynamic frequencies
of the top m blocks is the weighted match score. The ratio
k/m is the unweighed rrzatch score. A perfect match will
has a score of one. A random frequency estimate will have
an average score m/N. The closer to one, the better the
heuristic estimate.

Below. we first present our results for the SPECint92 C
benchmarks. In this experiment, we calculate matching
scores for the top 1070, 2070, 30%, 40’%0. and 5070 of en-
tries for the following six analyses: block execution fre-
quency. edge frequency, function invocation frequency. func-
tion call frequency, global block execution frequency, and
global edge frequency. The dynamic profiles came from the
standard data sets supplied with the benchmarks.

Table 2 summarizes the unweighed and weighted
matching scores for local block frequencies predictions. It

Input. A call graph, each node of which IS a procedure and eaci
edge ~1-~, represents a call from function ji to~,. Edge~L-J has 10

cal call frequency lj?eq(~l -f,)

Output: Assignments of global function call frequent)
gjieq(fi~fi) to edge ~~-f, and invocation frequency cfreq(fl to ~

Subroutine: propagate_call_freq(f, head. final)
if f has been VIsited then

return;

II 1.fitid cfrzq(f)

foreach predecessor fp off do
if fp is not visited and (fp-f) N not a back edge then

return;

if t == head then

c~req(f~ = 1:
else

cfreq(f) = O;
cyclic_probability = O;

foreach predecessor fp off do
if final and (fp~f) M a back edge then

cycllc_probability += back_edge_prob(fp~f):

{eIse if (fp+f) M not a back edge
cfreq(f) += gJreq(fp~f):

if (cycIic_probabdity > 1 - epsdon) then
{cycltc_probabi llty = 1 epsdon:

cfreq(f)
Cfreq(f) = l-cyclic Drobabllitv;

//2. calculate ~lob~j call fieql~ettcles for fs out ed,rex
mark f as visited;
foreach successor fl off do

gfreg(f-tl) = lfreq(f-+fl) x c~req(f);
/1 update frac k_edgc_urob(f*fi) ~o it cut! be

// LIWd by the cwterwmt loop to calculate

// c[cl[c~v-obabdlty of inner loops

]If fl == head and not final then

back_edge_prob(f-fi) = lj?eq(f+fi) x cfreq (f);
//3. propagare to successor aode~

foreach successor fl off do
if (f~fi) is not a back edge then

propa~ate call freq(fi, head, final)

Process:

foreach ed~e do
back_edge_prob(edge) = ffreq(edge);

foreach function f in reverse depth first order do

if f is a loop head then

mark all nodes reachable from f as not visited
and all other as visited.

propagate_call_freq(f, f, false)
mark ail nodes reachable from entry func as not

visited and others as visited.

~o])agate call freq(entry func, erriry func, true)

Algorithm 3. Calclilate function call and invocation

frequencies.

shows that our technique identified 7970 of the top 20%
blocks that accounted for 82% of their frequencies. In most
tables below, unweighed scores are lower than weighted
scores, which indicates that our algorithms were successful
at identifying the heavily-executed regions.

~mch- 10% 20% 309?0 40 Y. 50T0

E=
marks ‘u w u w u w u w u w

es lresso .71 .71 .76 .78 .79 83 .81 .83 .83 .88

ii .85 .86 .84 .84 .82 .82 .83 .82 .84 .86

e ntott .84 .85 .86 .87 88 88 .88 88 .87 91

compress .79 .89 77 87 82 .88 .85 .88 .83 .91

Sc .80 .76 .78 .78 .82 .81 85 .81 .87 85

!Ucc .73 .76 75 .78 .76 .80 .78 80 .81 .87

Gee)-mean ,79 .80 79 .82 .81 .84 .83 .84 .84 .88

Table 2. Scores of SPEC92 local block frequency. U is

fraction and W is weiglztedfiaction.

Table 3 shows scores for the local edge frequencies.
These scores are lower than the block frequencies, which in-
dicates that our algorithms were better at identifying heavily
executed blocks than edges. For the 20% most frequently
executed edges, our technique identified about 64’%0of the
most frequently executed edges. which accounted for 699?0of
their frequencies.

I Bench- 1070 2070 so~o 40% 50‘%0
marks u w u w u w u w u w

espresso .57 .61 .64 .68 .67 .75 .71 .80 .76 .83

1; 61 .67 64 68 72 73 .74 .76 .78 .81. I
eqntott .73 .69 77 80 78 83 81 .88 84 89

compress ,65 .74 .72 .80 .71 .81 .74 .84 .77 .87

Sc .50 53 .57 .60 .62 65 .67 .69 .72 .74

!zCc .47 54 .52 60 58 .65 .65 72 71 .77

Gee-mean .58 .62 .64 .69 68 .73 .72 .78 .76 .82

Table 3. Scores of SPEC92 local edge frequency.

Tables 4 and 5 summarize the scores for function invoca-
tion and call frequencies. For the 20’%0most frequently exe-
cuted functions, our estimates identified 52~0 of these invo-
cations, which accounted for 85% of their frequencies. For
the 2070 most frequent function calls, our estimates identi-
fied only 3970 of the calls, but these calls accounted for
over 72% of their frequency.

Bench- 10% 20 ‘%0 30% 40% 50%
marks u w u w u w u w u w

espresso 57 .66 68 .83 .70 .97 77 .98 .77 .99

a .39 76 .52 .92 67 .96 83 97 .89 98

eqntott .43 .98 .46 .99 .53 1.0 48 1.0 .65 1.0

compress 1.0 1.0 .50 1.0 .80 1.0 .86 1.0 .88 1.0
Sc 50 .57 .50 .91 .44 .91 .52 .97 .52 .99

Zcc .35 .32 47 53 .52 .67 63 .76 71 .81

Gee- mean ,51 .67 .52 .85 .69 .91 .67 .94 .73 .96

Table 4. Scores of SPEC92 fanction invocation

ji-equency.

Bench- 10% 20% 3070 40% 50%
marks u w u w u w u w u w

espresso 53 .63 .54 .76 .65 .87 .66 .89 .74 .95

Ii 31 .81 34 .84 .49 .90 65 91 .86 94

eqntott .30 .97 .37 .98 .45 .99 47 10 .47 1.0

compress 1.0 10 .75 1.0 .67 1.0 71 10 .78 10

Sc .32 41 .26 .70 33 .78 33 79 .51 .99

gcc .18 .16 .26 .32 .33 .46 .42 57 .50 66

Gee-mean .38 .57 .39 .72 .47 .81 .52 .85 .63 .91

Table 5. Scores of SPEC92 global function call

j-equency.

Tables 6 and 7 summarize the scores for global block and
edge frequencies. For the 20% most frequently executed
blocks, our estimates identified 56% of the blocks that ac-
count for 7770 of their frequencies. By contrast, Wall’s best
static block frequency estimate achieved a weighted score of
about 50% for the top 25% blocks [Wall-911. Our results
are a significant improvement. For the 20% most fre-
quently executed edges, our estimates identified 4970 of the
edges that account for 7870 of their frequencies.

Bench- Iofzo 20 Y. 30% 40% 50% I
marks u w u

espresso .53 .53 66

ti .44 .75 .48

eqntott .66 30 69

compress .54 65 67 .,-

Sc .54 .81 .54 90] 561.96/,561 99~.62] ,99

50] 46] 6zI .551 781.651 86

,.w
gcc 1.261 271 381

Gee-mean 1.481 511 561 771 571.881 tkl 941 68]~

Table 6. Scores of SPEC92 global block ji-equency.

Bench- 10% 20% 30% 40% 50%
marks u w u WI

espresso .50 55 61 ‘“ ‘

ti .35 .76 .41

eqntott .63 .30 .60

compress .47 .55 .63 ..”

Sc .40 .77 .43 91 .45 .94 56 .98 .68 1.0

gcc .26 28 .34 .49 .44 .67 .58 .78 .69 86

Gee-mean .42 .50 .49 .78 .56 .89 .62 .94 .72 .97

Table 7. Scores of SPEC92 global edge frequency.

Next we present our results for several Unix commands.
To collect the dynamic profiles, each command was run to
exercise all of its command line options. Table 8 summa-
rizes the weighted scores for the top 2070 of block execu-
tion frequencies, edge frequencies, function invocation fre-
quencies, function call frequencies, global block execution
frequencies, and global edge frequencies. The average scores
are around 809?0for the top 20Y0.

I Bench- \ LBK I LBR I FI I FC I GBK I GBR1
marks

cal .49 55 1.0 10 .80 .80

cmp ,86 .93 0.0 1.0 .86 .93

ed .74 .65 .96 31 .82 81

zrep .66 .52 1.0 1.0 .86 .92

factor .89 .87 0.0 1,0 ,94 .94

pack 90 77 1.0 10 42 .43

split .99 .99 1.0 00 99 .99

sum .69 .71 1.0 0.0 .69 .71

tsort .77 .76 1.0 10 87 .81

Utiq .81 73 1.0 1.0 .39 .45

Wc ,92 .55 1.0 1,0 .95 .91

Average .79 .73 .82 .76 .78 .79

Table 8. Scores for Unix commands (top 20%): LBK-

local block, LBR-local branch, FI-function invocation, FC-

function call, GBK-global block, GBR-global branch.

8. Conclusion and Future Work
We have presented an algorithm that statically estimates

program profiles in three steps. First, we estimate branch
probabilities with a new combination of Ball and Larus’s
branch prediction heuristics and the Dempster-Shafer theory.
Next, we propagate branch probabilities along each proce-
dure’s control-flow graph to obtain local block and edge fre-
quencies. Finally. we use these local estimates to compute
function call and invocation frequencies. With the function
invocation frequencies, we can then obtain global block and
edge frequencies. Table 9 summarizes the weighted scores
for the top 20% of profiles from experiments with the
SPECint92 Benchmarks and several Unix commands.

Profiles SPEC 92 Unix
Benchmarks Commands

Local block 82% 79%
Local edge 69% 73%

Funct. invocation 85% 82%

Function call 72% 76%

Global block 77% 78%

Global edge 78% 79% J

Table9. Average scores ofstatic profiles. (20%)

Several improvements might increase the accuracy of our
techniques. Fkst, Ball and Larus’s heuristics apply to two-
way branches, so we assume equal probabilities for multi-
way branches. This assumption may affect programs that
heavily use switch statements (e.g., gee). We tried rewrit-
ing some multiway branches into a series of conditional

branches, but it did not improve the accuracy because the

new blocks were too small for the heuristics. New heuris-

tics for mtdtiway branches are needed.
Second, current heuristics use only local information

about a block and its immediate successors. This makes the
heuristics simple and fast, but looking deeper into the CFG
might improve the accuracy.

Third, our experiments used the hit rates reported in Ball
and Larus’ paper. Their experiments ran on a-different pro-
cessor (MIPS R2000) and used C, C++, and Fortran pro-
grams. Since our programs were all written in C, we
might improve accuracy by using hit rates from C pro-
grams compiled by the same compiler.

Flnally, indirect function calls are difficult to analyze
statically. Currently our compiler exploits some knowl-
edge about the run-time library—for example that qs ort
calls its last argument. Calls through pointers in user code
are not analyzed. This reduces the accuracy of the function
call and execution frequencies for programs, such as gee,
that indirectly invoke many functions. Techniques that
find the functions bound to a function parameter (e.g.,
[Hall-92]) are too imprecise to determine local function call
frequencies for a set of possible functions. Furthermore, in
gcc (and object-oriented programs), many functions are
called indirectly through tables. New analysis techniques
are needed.

Acknowledgments
Thomas Ball, James Bash, Dorsey Drane, Mark Hill,

Xiaoning Ling, Vivek Sarkar, Guri Sohi, Gary Tracy, T.
Vijaykumar, and David Wall provided many helpful com-
ments on the paper. The second author was supported in
part by NSF NYI Award CCR-9357779, with matching
funds from Digital Equipment Corp., and NSF Grants
CCR-91O 1035 and MIPS-9225097.

References
[Bail-92] Ball, Thomas, and James R. Larus, “Optimally Profiling and

Tracing Pro grams.” Conference Record oj tlw Nuieteeutlz ACM
~np&m on Principles of~rogrmutril~g Langua~es (Jan., 1992) pp.

[Ball-93] Ball, Thomas, and James R. Larus, “Branch PredictIon for
Free.” Proceedings of ACM SIGPLAN ’93 Conference on
Pro~rammirrq ,hnquafe Deri~n and Iniplenrentation (June, 1993) pp
300-313.

[Chang-91] Chang, P.P., S.A. Mahlhe. and W. W, Hwu,, “Using profile
information to assist classic code optimizations. ” Software Pruc/lce
artd Ezper+rrce, 21, 12 (Dec., 1991) pp. 1301-1321.

[Chen-92] Chen, W., R. Bringmann, S. Mahlke, S. Anik, T. Kiyohara,
N, Warter, D. Lavery, W.-M. Hwu, R. Hank, J. Gyllenhaal, “Using
Proflde Information to Assist Advanced Compiler Optimization and
Scheduling,” Language$ and Compilers fi)r Parallel Conpurirrg,
Springer-Verlag, 1993, pp. 31-48.

[Fisher-81] Fisher, Joseph A, “Trace Scheduling: A Technique for
Global Microcode Compaction.” IEEE Trans. Computers, C-30, 7
(JU1y, 1981) pp. 478-490.

[Fisher-92] Fisher, Joseph A. and S. M. Freudenberger, “Predicting
Conditional Branch Directions From Previous Runs of a Program,”
Fifth International Conference on Arclz~tectural Support for
Prograumng Language anJ t3pera~ing Systenrs (October 1992) pp.
85-9.5.

[Forman-81] Forman, Tra R., “On the Time Overhead of Counters and
Traversal Markers,” proceedings of Ilze ftlt Inlernutwnul conference
on Sojware Engineering (March 1981) pp. 164-169.

[Graham-83] Graham, S.L, P.B. Kessler, and M,K. McKusick. “An
Execution Profiler for Modular Programs,” Software-Practice a17d
E.xpertence, 13 (1983) pp. 671-685.

[Hall-9’2] Hall, M.W. and Kerr Kennedy, “Efficient Call Graph
Analysis,” ACM Lerrers on Prograuurrwtg Languages and S)>stetru, Vol.
1. No. 3 (Sept. 1992) PP 227-242.

[Hank-93] Hs&k, R. E.; S A. Mahlke. R.A Bringmann, Gyllehaal. and
W.W, Hwrr, “Superblock Formation Using Static Program Analysis,”
A4icr(~-26 (Dee 1993) pp. 247-255.

[Hicky-188] Hickey. T and Cohen, J., “Automating Program Analysls,”
JACM, 35.1.1988. pp. 185-220.

lHuelsbersen-941 Huelsber~en. L.. Larus. J.. and Aiken, A . “Usirrs the
Run-T~me Sizes of D~ta Structures to Guide Parallel-Th~ead
Creation,” Prrx-eed!ngs of the ACM Conference on Lisp and
Func/iorral Programming (June, 1994) pp. 79-90

[Hwu-89] Hwu, W.W. and P.P. Chang. “Achieving High Instruction
Cache Performance with a Optimizing Compiler,” Proceedtn,?$ 16t/1
Internationtd Syrrposium on Computer Architecture, Jerusalem, Israel
(May 1989) pp. 242-250.

[McFarling-89] McFarling, S.. “Program Optimization for Irrstructlon
Caches,” Third Internailonal Cottferewe on Arclutecturul Support for
Pro,granumng Language and Operating Sys/enr~ (April 1989) pp. 183-
191.

[Pettis-90] Pettis, Karl, and Robert C, Hanserr, “Profde Gmded Code
Posltloning. ” Proceedur,q$ of ACM SIGPLAN’9(J Conference on
fr&outrw?: Lan,quage lk~~n and lmp[enrentation (June, 1990) pp.

[Ramamoorthy-65] Ramamoorthy, C. V., “Discrete Markov Analysis of
Computer Programs,” In ACM Proceeclin:s 20rh Narwnal Conference
(August 1965) pp. 386-391.

[Sarkar-891 Sarkar, V., “Determlnirrg Average Program Execution
Times and their Variance,” 1+’oczedtn~$ nf rhe ACM SIGPLAN ’89
conference on Progranunm~ Languuge DeAign and II)lp[e!?let??atiotl
(Jcme1989) PP. 298-312.

[Shafer-’76] Sha~er. G.. A A4ulllemat~cal Theory of Evdeuce. Princeton
Llniverslty Press. 1976.

[Spec92j SPEC Cint92. Release V 1.1
[Wagner-94] Wagner. T.A , V. Maverick, S L. Graham, and MA

Harrison, “Accurate Static Estimators for Program Optlmlzation,”
Proceedings of A CA4 SIGPLAN ‘W Conference on Progranrnun,q
Language Design and lntpleurentat[on, (June 1994) pp. 85-96

[Wall-91] Wall, David W,, “’Predicting Program Behavior Using Real or
Estim~ted Profiles.” Proceedmg& of ACM SIGPLAN’91 Conference on
Prograrnmirrg Language Design and Implenzentarlo)!, Toronto.
Ontario, Canada (June, 1991) pp. 59-70.

[WU-92] Wu, Y. “Order!ng Functions for Irnprovlng Memory
Reference Locality in Shared Memory Multiprocessor Systems”, 251/1
Annuul Itlternutio?zul Sj>tnpo. tium on Micr<>arcilitec-tl(re, Dec. 1992

Appendix A
This appendix contains a small, complete example that

illustral.es the algorithms in this paper. Consider the a t o i
function in Figure 3 as an example. Figure 4 shows its
flow graph. It contains two non-loop branches and one
loop branch. Five heuristics apply to the first non-loop
branch bo-={bl, b5}, because bo performs a comparison of a

pointer with NULL (PH), b] uses s without first defining it

9

(GH) and stores to *val (SH), and b~ contains a call (CH)

and a return (RH). The combined probability of 0.95 for
bo- b 1 is much higher than the probability estimated by

any of the five heuristics.
For the second non-loop branch b 1~{b2, bd}, both the

Loop Header (LHH) and-Return heuristi& (RH) apply.
Table 10 summarizes the pro ~bilities.
P pertnutaturn program :,find report_one(u, nzm)

all tbe permutations for {1, 2. clzar ‘a,
may} *I

mzam(argc, argv)
mt argc:

Clzar “arw[l.
{

utt ma-x:
c/Iur ‘tia,-
atoi(ar,qv[l], &nzax);
U = (char ‘~) malloc(max):
pwn2ute(a,0,max):

1

permute(a,n,tnax)
char *CG
int n,mox,

{
if (n == ma-z)

report_one(a,nmx):
else

permute_nextJoJ
(a,n,max);

}

permute_ne.Yt>os(a, n, nzax)
char *o;
int n, mm,.

{
int K
for(l=O;l < mar;,+ +){

If (! m>ref~(i, a, n)) {
a[n] = i:
permute(a,n+ I,mox);

}}}

olttnox:

{
mt 1,
for (1=0;1 < nwx,i++)

prmf(”%c “,a[l]+ ‘O’);
putt/tar(‘k ‘);

}

u7tmJreJix(z, a, n)
clzar *a,.
mt 1, n:

1 mtfound = OJ:
for (J=O:j < n:j++)

lf (a[j] = = i){
return 1;

}
return 0,

}

w atol (char ‘k.\, int *val)

{
wt 1:
if(.\~= O,){

*val = O;
for(; *s; s++)

‘hval = *va[* 10 + ‘Is
!0,;

return 1:
} else{

prmtf(“lnvahd Input.kn “),
rerurn O:

}}

Figure 3. The per-mutation program.

#
bO

Ifs == NuLL

#

bl *val = O b5 Cai[printf

.= If *S == o return O I

I *

(*

Figure 4. Flow graph for a to i.

Heuristic bO-+bl bO+b5

CH 78 .22

RH .72 28

SH .45 .55
PH .60 .40

Table 9. Branch probabilities for bo--+{bl, b5].

Heuristic b1~b2 b1~b4

LHH .75 .25
RH .72 .28

I u“,,, “,,KU I .07 12

Table 10. Branch probabilities for b] --+{b2, bd).

.115

c

I
z’

1.0

bO

.948

— bl

.885

b2

\

Figure 5. Branch probabilities of at o i.

The branch b3+b3, b4) contains a back edge, and only

the loop branch heuristic (LBH) applies, so:
prob(b3+-b3) = LBH(b3--+b3) = 0.88

prob(b3-+b4) = LBH(b3+b4) = O i2

Figure 5 shows the flow graph labeled with each edge’s
branch probabilities. As an example of Algorithm 2,
consider the at o i function in Figure 5. For the inner loop
(b3-+b3) the cyclic probability is the same as prob(b3+b3).

For the outer loop, the block frequencies and edge frequen-
cies for the at o i function are calculated

bfreq(bo) -I

.Peq(bO+bl) ~ prob(bo*bl) x 1 = 0,95

freq(bO-b5) = prob(bo~b5) x 1 = 0.0S2

bfreq(bI) = fieq(bodbl) = 0.95

freq(bl +b2) = prob(bl *b2) x bfieq(bI)

freq(bl+bJ = prob(bl +b4) x bfreq(bl)

bfieq(b2) = freq(b1*b2) = 084

heq(b2+b3) = prob(b2*b3) x hfieq(b2)

W@b3)
.fq(b2-+b3) 084—

- I-prob(bq-b ~) ‘mm

freq(b3-b3) = bj-eq(b3ix 0.~4 = 6.15

freq(b~+bd) = bj?eq(b ~) x O 12 = 0,8-/

as follows:

=0.89 X09S =084

= 0.12 XO.95 = 0.110

= [XO.84’ = 0.84

= 6.99

bfreq(~4) = freq(b~-b4 ~ + freq(b3+bJ = 0.11 + 0.84 =
0.95

bfreq(b5) = freq(b(1*b5) = 005

F@re 6 shows the block and edge execution frequencies.
Note that because we start the entry block with a frequency
of one, the exit blocks’ total frequency is also one. That is,
ji-eq(bO*b5) + freq(bleb~) + jl-eq(b3*b4) = 0,05 + 0.11 +

0.84 = 1.

The at o i function calls print f in block b5 and block

b5’s execution frequency is 0.05. So, in the call graph,

10

atoi calls print f with a local frequency of 0.05. We
can continue this process to find the local call frequencies
for the permutation program (Figure 7 (a)).

J 1.0

EJo,’”:“’”k
/- .839

b2 .839

I I .839

Figure 6. Block and edge frequencies of at oi

.052

1

.5

0052

8.129

1524

(a) Edges Marked with Local Call Frequencies

1

2.101

0 05?

17.087

(b] Edges Marked with Local Call Frequencies

Figure 7 Call graph of the permutation program.

Figure 7(a) shows that the permutation program has a re-

cursive cycle in which permute is the head. The first call to
propagate_call_freq updates lfreq(permute_next_pos -- per-
mute) from 1.52 to 0.5 x1.52 = 0.76. In the final call to
propagate_call_freq, we obtain function call and invocation
frequencies shown in Figure 7(b). Table 11 lists local edge
frequencies in col. 3, function invocation frequencies in CO1.
4, and global edge frequencies in CO1.5.

J U1-UL I ,L7 I 1 /.1 I *.7 I

1=
,l,_~. .-L.,.

in_p refix
in m-efix b7-bl I .98 I 17.1 I 16.7 I

L------

E
ermule_next_pos I Ou+ D> I UL I L. 1 I .UJ

ermute_nex~fiC hn+h7 a? 71 2.1,V. uv “,, ..-
[

-. .

nm I hl+h? I 15 ’211+.ermute_next_k.. ,
ermute next DOS ;;X;- ‘~~ermutejnext:pos b2+b3 1.5 2.1 3A I

1=
IS Lul I U1-U4] .11 I l,U I
atoi bl+b2 I .84 1..0 .;:
atoi I b2-b3 .84 I 1.0 I .84

5-- ‘“”’ “
atoi b3+b3 6.2 1.0 6.2

atoi b3+b4 .84 1.0 .84

ermute bO+bl .50 4.2 2.1

es-mute bO-b2 .50 4.20 2.1

Table 11. Global frequencies of program.

For example, Table 12 lists the global edge frequencies
from static and dynamic profiling for the program, with in-
put max = 6. The top 10% of the edges match, so the top
10% matching score is 1. For the top 20?ZCof edges, how-
ever, 4 of 5 edges match and the weighted score is 0.89.

El 1
Static top ~o sco-

f# brs freqs f# res

1 1+3 100.0 1 1-3 17580
1 ‘2-1 QQ n I I 2-1 I f <mn

E
A J -, ““, ” L J-1 .dv-?”

1 0+7 16,7 1 0+7 7416 10 1.0

1 7*1 16.7 1 7+1 7416

2 1+1 15.0 3 341 6185 20 .89
~ ‘1+ I Isn x 14? 5L66

.84 I 4 1+2 1 90 1,0
I 0“),,12 .,1, 1 I)

Table 12. Edges frequency rnazching for program.
Fnnction k~y: 1- i>]$~ojlr; 2- r~port_one: 3-

perrnute_tlext>os: 4- atoi: 5- permute.

11

