
CMSC 28100-1 / MATH 28100-1

Introduction to Complexity Theory

Fall 2017 – Midterm

Solution

October 31, 2017

Problem 1 (3 points). Give precise definitions of the diagonal language and the universal
language.

Solution. The diagonal language is

D = {〈M〉 : 〈M〉 /∈ L(M)},

that is, it is the set of encodings of Turing machines M such that M does not accept its own
encoding 〈M〉 (i.e., it either rejects or loops forever).

The universal language is

Lu = {〈M,w〉 : w ∈ L(M)},

that is, it is the set of (encoded) pairs (M,w) such that M is a Turing machine that accepts
the input w. /

Problem 2 (3 points). Give examples of languages A, B and C such that A ⊆ B ⊆ C, A and C
are undecidable, and B is decidable.

Solution. Let

A = {〈M,w〉 : w ∈ L(M) and |w| is even};
B = {〈M,w〉 : |w| is even};
C = {〈M,w〉 : w ∈ L(M) or |w| is even};

where |w| denotes the length of w.
Clearly we have A ⊆ B ⊆ C. Furthermore, it is easy to see that B is decidable by using an

algorithm to compute the length of a word.
Now A is the intersection of B with the universal language Lu. It is equally as hard to

decide A as it is to decide Lu since for a Turing machine M , we can consider a Turing machine M ′

that starts by erasing the symbol under the head, moving right, then simulating M ; for such M ′

we have 〈M,w〉 ∈ Lu if and only if 〈M ′, 0w〉 ∈ Lu. But then we get

〈M,w〉 ∈ Lu ⇐⇒ 〈M,w〉 ∈ A ∨ 〈M ′, 0w〉 ∈ A.

On the other hand, the language C is the union of B with the universal language Lu. With
the same construction of M ′ as above, we have

〈M,w〉 ∈ Lu ⇐⇒ 〈M,w〉 ∈ C ∧ 〈M ′, 0w〉 ∈ C.

Therefore A and C are both undecidable. /

1

Problem 3 (7 points). Give one example of each (a) a language that is r.e. but not recursive,
(b) a language that is r.e. but its complement is non-r.e., (c) a language that is non r.e. and its
complement is also non-r.e.

Solution. For items (a) and (b), we have seen in class that the universal language Lu = {〈M,w〉 :
w ∈ L(M)} is r.e. but not recursive. Since languages that are both r.e. and co-r.e. are recursive,
it follows that Lu is also not co-r.e. (i.e., its complement is not r.e.).

For item (c), consider the language

L = {〈M1, w1,M2, w2〉 : w1 ∈ L(M1) and w2 /∈ L(M2)}.

Let Ma be a Turing machine that accepts all inputs and let Mr be a Turing machine that
rejects all inputs. Let also ε be the empty string.

We claim that L is not r.e. Indeed, if this was the case, since we have

〈Ma, ε,M2, w2〉 ∈ L⇐⇒ 〈M2, w2〉 /∈ Lu,

this would imply that Lu is r.e., i.e., that Lu is co-r.e., a contradiction.
We claim now that L is not co-r.e. Indeed, if this was the case, since we have

〈M1, w1,Mr, ε〉 ∈ L⇐⇒ 〈M1, w1〉 ∈ Lu,

this would imply that Lu is co-r.e., a contradiction. /

Problem 4. Given languages L and R, let L ∗ R = {xy : x ∈ L, y ∈ R}, where xy denotes the
concatenation of x and y.

(a) (5 points) Suppose L and R are r.e. Is L ∗R then r.e.? If so, prove this. If not, disprove
it.

(b) (5 points) Suppose L and R are recursive. Is L ∗ R then recursive? If so, prove this. If
not, disprove it.

Solution. For item (a), let us prove that L ∗R is r.e. Let ML and MR be Turing machines such
that L(ML) = L and L(MR) = R and consider the following algorithm.

Algorithm 4.1: Algorithm for recognizing L ∗R
1 On input x, let n = |x| be the length of x and write x = x1x2 · · ·xn for xi ∈ Σ.
2 for s← 0, 1, . . . do
3 for i← 0 to n do
4 Run ML on x1 · · ·xi (if i = 0, this is the empty string) for s steps.
5 if ML accepts then
6 Run MR on xi+1 · · ·xn (if i = n, this is the empty string) for s steps.
7 if MR accepts then Accept.

We claim that the algorithm above accepts exactly L ∗R (it may not halt though).
Indeed, if x = x1x2 · · ·xn ∈ L∗R, then there exists i ∈ {0, 1, . . . , n} such that y = x1 · · ·xi ∈

L and z = xi+1 · · ·xn ∈ R, which implies that y ∈ L(ML) and z ∈ L(MR). If s is large enough
so as the computations of ML on input y and of MR on input z both take less than s steps,
then the algorithm above will see this and accept. Since the algorithm never explicitly rejects,
it follows that the algorithm accepts x.

On the other hand, if the algorithm accepts x = x1 · · ·xn, then there must exist i ∈
{0, 1, . . . , n} such that x1 · · ·xi ∈ L(ML) and xi+1 · · ·xn ∈ L(MR), so we have x ∈ L ∗R.

2

For item (b), let us prove that L ∗R is recursive. Let ML and MR be Turing machines that
decide L and R respectively and consider the following algorithm.

Algorithm 4.2: Algorithm for deciding L ∗R
1 On input x, let n = |x| be the length of x and write x = x1x2 · · ·xn for xi ∈ Σ.
2 for i← 0 to n do
3 Run ML on x1 · · ·xi (if i = 0, this is the empty string).
4 if ML accepts then
5 Run MR on xi+1 · · ·xn (if i = n, this is the empty string).
6 if MR accepts then Accept.

7 Reject.

Note that since ML and MR always halt, the algorithm above always halts.
Indeed, if x = x1x2 · · ·xn ∈ L∗R, then there exists i ∈ {0, 1, . . . , n} such that y = x1 · · ·xi ∈

L and z = xi+1 · · ·xn ∈ R, which implies that y ∈ L(ML) and z ∈ L(MR). This implies that
the algorithm above accepts x on or before iteration i.

On the other hand, if the algorithm accepts x = x1 · · ·xn, then there must exist i ∈
{0, 1, . . . , n} such that x1 · · ·xi ∈ L(ML) and xi+1 · · ·xn ∈ L(MR), so we have x ∈ L ∗R. /

Problem 5 (7 points). Let Mi denote the i-th Turing machine. Show that the language

L = {(i, j) : there is some input on which both Mi and Mj halt}

is undecidable.

Solution. We will reduce L to the universal language Lu = {〈M,w〉 : w ∈ L(M)}.
Suppose toward a contradiction that L is decidable, that is, suppose that there exists a

Turing machine ML that decides L. Consider then the following algorithm.

Algorithm 5.1: Deciding Lu from L.

1 On input 〈M,w〉, compute i such that Mi is the Turing machine with the following
algorithm: “On input x, run M on w. If M accepts, accept; otherwise loop forever.”.

2 Run ML on input (i, i).
3 if ML accepts then Accept.
4 else Reject.

Note that since ML always halts, the algorithm above always halts.
Note also that if i is the index computed by the algorithm above for the input 〈M,w〉, then

we have

w ∈ L(M) =⇒ L(Mi) = Σ∗; w /∈ L(M) =⇒Mi never halts on any input.

Hence 〈M,w〉 ∈ Lu if and only if (i, i) ∈ L, which implies that the algorithm above de-
cides Lu, a contradiction. /

Problem 6 (10 points). Prove Rice’s Theorem that every nontrivial property of r.e. languages
is undecidable.

Solution. Rice’s Theorem is the following.

Theorem. Let P be a subset of all r.e. languages that is not trivial (that is, there is at least
one r.e. language in P and at least one r.e. language not in P) and let

LP = {〈M〉 : L(M) ∈ P}.

Then Lp is undecidable.

3

Proof. Note that if P is the complement of P with respect to the set of all r.e. languages,
then LP = LP = {〈M〉 : L(M) /∈ P}.

This means that by possibly replacing P with P , we may suppose without loss of generality
that ∅ /∈ P (i.e., the empty language is not in P).

Since P is non-trivial, we know that there exists L ∈ P , and since L is r.e., we know that
there exists a Turing machine ML such that L(ML) = L.

Suppose toward a contradiction that LP is decidable, that is, there exists a Turing ma-
chine MP that decides LP . Consider then the following algorithm.

Algorithm 6.1: Deciding Lu from LP .

1 On input 〈M,w〉, let M ′ be the Turing machine associated with the algorithm: “On
input x, run M on w. If M accepts, run ML on x and return its result. If M rejects,
then reject.”.

2 Run MP on M ′.
3 if MP accepts then Accept.
4 else Reject.

Note that since MP always halts, the algorithm above always halts.
Note also that if M ′ is the Turing machine computed by the algorithm above for the in-

put 〈M,w〉, then we have

L(M ′) =

{
L(ML), if w ∈ L(M);

∅, if w /∈ L(M);

=

{
L, if w ∈ L(M);

∅, if w /∈ L(M).

Hence 〈M,w〉 ∈ Lu if and only if 〈M ′〉 ∈ LP (since ∅ /∈ P and L ∈ P), so the algorithm
above decides Lu, a contradiction. �

/

4

