CMSC 28100-1 / MATH 28100-1 Introduction to Complexity Theory Fall 2017 – Midterm Solution

October 31, 2017

Problem 1 (3 points). Give precise definitions of the diagonal language and the universal language.

Solution. The diagonal language is

$$D = \{ \langle M \rangle : \langle M \rangle \notin L(M) \},\$$

that is, it is the set of encodings of Turing machines M such that M does not accept its own encoding $\langle M \rangle$ (i.e., it either rejects or loops forever).

The universal language is

$$L_u = \{ \langle M, w \rangle : w \in L(M) \},$$

that is, it is the set of (encoded) pairs (M, w) such that M is a Turing machine that accepts the input w.

Problem 2 (3 points). Give examples of languages A, B and C such that $A \subseteq B \subseteq C$, A and C are undecidable, and B is decidable.

Solution. Let

$$\begin{split} A &= \{ \langle M, w \rangle : w \in L(M) \text{ and } |w| \text{ is even} \}; \\ B &= \{ \langle M, w \rangle : |w| \text{ is even} \}; \\ C &= \{ \langle M, w \rangle : w \in L(M) \text{ or } |w| \text{ is even} \}; \end{split}$$

where |w| denotes the length of w.

Clearly we have $A \subseteq B \subseteq C$. Furthermore, it is easy to see that B is decidable by using an algorithm to compute the length of a word.

Now A is the intersection of B with the universal language L_u . It is equally as hard to decide A as it is to decide L_u since for a Turing machine M, we can consider a Turing machine M' that starts by erasing the symbol under the head, moving right, then simulating M; for such M' we have $\langle M, w \rangle \in L_u$ if and only if $\langle M', 0w \rangle \in L_u$. But then we get

$$\langle M, w \rangle \in L_u \iff \langle M, w \rangle \in A \vee \langle M', 0w \rangle \in A.$$

On the other hand, the language C is the union of B with the universal language L_u . With the same construction of M' as above, we have

$$\langle M, w \rangle \in L_u \iff \langle M, w \rangle \in C \land \langle M', 0w \rangle \in C.$$

Therefore A and C are both undecidable.

Problem 3 (7 points). Give one example of each (a) a language that is r.e. but not recursive, (b) a language that is r.e. but its complement is non-r.e., (c) a language that is non r.e. and its complement is also non-r.e.

Solution. For items (a) and (b), we have seen in class that the universal language $L_u = \{\langle M, w \rangle : w \in L(M)\}$ is r.e. but not recursive. Since languages that are both r.e. and co-r.e. are recursive, it follows that L_u is also not co-r.e. (i.e., its complement is not r.e.).

For item (c), consider the language

$$L = \{ \langle M_1, w_1, M_2, w_2 \rangle : w_1 \in L(M_1) \text{ and } w_2 \notin L(M_2) \}.$$

Let M_a be a Turing machine that accepts all inputs and let M_r be a Turing machine that rejects all inputs. Let also ϵ be the empty string.

We claim that L is not r.e. Indeed, if this was the case, since we have

$$\langle M_a, \epsilon, M_2, w_2 \rangle \in L \iff \langle M_2, w_2 \rangle \notin L_u$$

this would imply that $\overline{L_u}$ is r.e., i.e., that L_u is co-r.e., a contradiction.

We claim now that L is not co-r.e. Indeed, if this was the case, since we have

$$\langle M_1, w_1, M_r, \epsilon \rangle \in L \iff \langle M_1, w_1 \rangle \in L_u$$

◁

this would imply that L_u is co-r.e., a contradiction.

Problem 4. Given languages L and R, let $L * R = \{xy : x \in L, y \in R\}$, where xy denotes the concatenation of x and y.

- (a) (5 points) Suppose L and R are r.e. Is L*R then r.e.? If so, prove this. If not, disprove it.
- (b) (5 points) Suppose L and R are recursive. Is L * R then recursive? If so, prove this. If not, disprove it.

Solution. For item (a), let us prove that L * R is r.e. Let M_L and M_R be Turing machines such that $L(M_L) = L$ and $L(M_R) = R$ and consider the following algorithm.

Algorithm 4.1: Algorithm for recognizing L * R

We claim that the algorithm above accepts exactly L * R (it may not halt though).

Indeed, if $x = x_1 x_2 \cdots x_n \in L * R$, then there exists $i \in \{0, 1, \dots, n\}$ such that $y = x_1 \cdots x_i \in L$ and $z = x_{i+1} \cdots x_n \in R$, which implies that $y \in L(M_L)$ and $z \in L(M_R)$. If s is large enough so as the computations of M_L on input y and of M_R on input z both take less than s steps, then the algorithm above will see this and accept. Since the algorithm never explicitly rejects, it follows that the algorithm accepts x.

On the other hand, if the algorithm accepts $x = x_1 \cdots x_n$, then there must exist $i \in \{0, 1, \dots, n\}$ such that $x_1 \cdots x_i \in L(M_L)$ and $x_{i+1} \cdots x_n \in L(M_R)$, so we have $x \in L * R$.

For item (b), let us prove that L * R is recursive. Let M_L and M_R be Turing machines that decide L and R respectively and consider the following algorithm.

Algorithm 4.2: Algorithm for deciding L * R

- 1 On input x, let n=|x| be the length of x and write $x=x_1x_2\cdots x_n$ for $x_i\in\Sigma$. 2 for $i\leftarrow 0$ to n do
- **3** Run M_L on $x_1 \cdots x_i$ (if i = 0, this is the empty string).
- 4 if M_L accepts then
 - Run M_R on $x_{i+1} \cdots x_n$ (if i = n, this is the empty string).
- 6 if M_R accepts then Accept.
- 7 Reject.

Note that since M_L and M_R always halt, the algorithm above always halts.

Indeed, if $x = x_1 x_2 \cdots x_n \in L * R$, then there exists $i \in \{0, 1, ..., n\}$ such that $y = x_1 \cdots x_i \in L$ and $z = x_{i+1} \cdots x_n \in R$, which implies that $y \in L(M_L)$ and $z \in L(M_R)$. This implies that the algorithm above accepts x on or before iteration i.

On the other hand, if the algorithm accepts $x = x_1 \cdots x_n$, then there must exist $i \in \{0, 1, \dots, n\}$ such that $x_1 \cdots x_i \in L(M_L)$ and $x_{i+1} \cdots x_n \in L(M_R)$, so we have $x \in L * R$.

Problem 5 (7 points). Let M_i denote the *i*-th Turing machine. Show that the language

$$L = \{(i, j) : \text{there is some input on which both } M_i \text{ and } M_j \text{ halt}\}$$

is undecidable.

Solution. We will reduce L to the universal language $L_u = \{ \langle M, w \rangle : w \in L(M) \}$.

Suppose toward a contradiction that L is decidable, that is, suppose that there exists a Turing machine M_L that decides L. Consider then the following algorithm.

Algorithm 5.1: Deciding L_u from L.

- 1 On input $\langle M, w \rangle$, compute i such that M_i is the Turing machine with the following algorithm: "On input x, run M on w. If M accepts, accept; otherwise loop forever.".
- **2** Run M_L on input (i, i).
- 3 if M_L accepts then Accept.
- 4 else Reject.

Note that since M_L always halts, the algorithm above always halts.

Note also that if i is the index computed by the algorithm above for the input $\langle M, w \rangle$, then we have

$$w \in L(M) \Longrightarrow L(M_i) = \Sigma^*;$$
 $w \notin L(M) \Longrightarrow M_i$ never halts on any input.

Hence $\langle M, w \rangle \in L_u$ if and only if $(i, i) \in L$, which implies that the algorithm above decides L_u , a contradiction.

Problem 6 (10 points). Prove Rice's Theorem that every nontrivial property of r.e. languages is undecidable.

Solution. Rice's Theorem is the following.

Theorem. Let P be a subset of all r.e. languages that is not trivial (that is, there is at least one r.e. language in P and at least one r.e. language not in P) and let

$$L_P = \{ \langle M \rangle : L(M) \in P \}.$$

Then L_p is undecidable.

Proof. Note that if \overline{P} is the complement of P with respect to the set of all r.e. languages, then $L_{\overline{P}} = \overline{L_P} = \{\langle M \rangle : L(M) \notin P\}.$

This means that by possibly replacing P with \overline{P} , we may suppose without loss of generality that $\emptyset \notin P$ (i.e., the empty language is not in P).

Since P is non-trivial, we know that there exists $L \in P$, and since L is r.e., we know that there exists a Turing machine M_L such that $L(M_L) = L$.

Suppose toward a contradiction that L_P is decidable, that is, there exists a Turing machine M_P that decides L_P . Consider then the following algorithm.

Algorithm 6.1: Deciding L_u from L_P .

- 1 On input $\langle M, w \rangle$, let M' be the Turing machine associated with the algorithm: "On input x, run M on w. If M accepts, run M_L on x and return its result. If M rejects, then reject.".
- 2 Run M_P on M'.
- **3** if M_P accepts then Accept.
- 4 else Reject.

Note that since M_P always halts, the algorithm above always halts.

Note also that if M' is the Turing machine computed by the algorithm above for the input $\langle M, w \rangle$, then we have

$$L(M') = \begin{cases} L(M_L), & \text{if } w \in L(M); \\ \varnothing, & \text{if } w \notin L(M); \end{cases}$$
$$= \begin{cases} L, & \text{if } w \in L(M); \\ \varnothing, & \text{if } w \notin L(M). \end{cases}$$

Hence $\langle M, w \rangle \in L_u$ if and only if $\langle M' \rangle \in L_P$ (since $\emptyset \notin P$ and $L \in P$), so the algorithm above decides L_u , a contradiction.

 \triangleleft