CMSC 28100-1 / MATH 28100-1
Introduction to Complexity Theory
Fall 2017 — Midterm
Solution

October 31, 2017

Problem 1 (3 points). Give precise definitions of the diagonal language and the universal
language.

Solution. The diagonal language is
D = {{M): (M) & L(M)},

that is, it is the set of encodings of Turing machines M such that M does not accept its own
encoding (M) (i.e., it either rejects or loops forever).
The universal language is

L, ={(M,w):weL(M)},
that is, it is the set of (encoded) pairs (M, w) such that M is a Turing machine that accepts

the input w. 4

Problem 2 (3 points). Give examples of languages A, B and C such that AC B C C, Aand C
are undecidable, and B is decidable.

Solution. Let

M,w) :w € L(M) and |w| is even};
B = {(M,w) : |w| is even};

M,w) :w e L(M) or |w| is even};
where |w| denotes the length of w.

Clearly we have A C B C C'. Furthermore, it is easy to see that B is decidable by using an
algorithm to compute the length of a word.

Now A is the intersection of B with the universal language L,. It is equally as hard to
decide A as it is to decide L,, since for a Turing machine M, we can consider a Turing machine M’
that starts by erasing the symbol under the head, moving right, then simulating M; for such M’
we have (M, w) € L, if and only if (M’, 0w) € L,.. But then we get

(M,w) € L, < (M,w) € AV (M',0w) € A.

On the other hand, the language C' is the union of B with the universal language L,. With

the same construction of M’ as above, we have

(M,w) € L, = (M,w) € C A {M', 0w) € C.
Therefore A and C are both undecidable. N



Problem 3 (7 points). Give one example of each (a) a language that is r.e. but not recursive,
(b) a language that is r.e. but its complement is non-r.e., (c) a language that is non r.e. and its
complement is also non-r.e.

Solution. For items (a) and (b), we have seen in class that the universal language L, = {(M, w) :
w € L(M)} is r.e. but not recursive. Since languages that are both r.e. and co-r.e. are recursive,
it follows that L, is also not co-r.e. (i.e., its complement is not r.e.).

For item (c), consider the language

L= {<M1,w1,M2,w2> Twy € L(Ml) and wo ¢ L(MQ)}.

Let M, be a Turing machine that accepts all inputs and let M, be a Turing machine that
rejects all inputs. Let also € be the empty string.
We claim that L is not r.e. Indeed, if this was the case, since we have

<Ma,€, M27w2> €L <— <M2,w2> Qé Lu,

this would imply that L, is r.e., i.e., that L, is co-r.e., a contradiction.
We claim now that L is not co-r.e. Indeed, if this was the case, since we have

<M1,w1, Mr,6> €L «— <M1,w1) S Lu,
this would imply that L, is co-r.e., a contradiction. N

Problem 4. Given languages L and R, let L« R = {zy : z € L,y € R}, where zy denotes the
concatenation of x and y.

(a) (b points) Suppose L and R are r.e. Is L x R then r.e.? If so, prove this. If not, disprove
it.
(b) (5 points) Suppose L and R are recursive. Is L * R then recursive? If so, prove this. If

not, disprove it.

Solution. For item (a), let us prove that L x R is r.e. Let My, and Mp be Turing machines such
that L(Mr) = L and L(Mpg) = R and consider the following algorithm.

Algorithm 4.1: Algorithm for recognizing L * R

1 On input z, let n = |z| be the length of z and write x = z129 - - -z, for ; € X.
2 for s+ 0,1,...do

3 for i <+ 0 to n do

4 Run My on xq---x; (if i = 0, this is the empty string) for s steps.

5 if M accepts then

6 Run Mp on 41 -+ x, (if i = n, this is the empty string) for s steps.
7 L if Mg accepts then Accept.

We claim that the algorithm above accepts exactly L * R (it may not halt though).

Indeed, if z = x129 - - - 2, € Lx R, then there exists i € {0,1,...,n} such that y = 21 ---z; €
L and z = zj41 -+ -z, € R, which implies that y € L(My) and z € L(Mpg). If s is large enough
so as the computations of My on input y and of Mg on input z both take less than s steps,
then the algorithm above will see this and accept. Since the algorithm never explicitly rejects,
it follows that the algorithm accepts .

On the other hand, if the algorithm accepts x = x1---z,, then there must exist i €
{0,1,...,n} such that zy---x; € L(M) and 241 -z, € L(Mg), so we have € L x R.



For item (b), let us prove that L x R is recursive. Let My and Mg be Turing machines that
decide L and R respectively and consider the following algorithm.
Algorithm 4.2: Algorithm for deciding L x R

1 On input z, let n = |z| be the length of z and write x = z129 - - -z, for z; € ¥.
2 for i + 0 to n do

3 Run My on x; ---x; (if i = 0, this is the empty string).

4 if Mp, accepts then

5 Run Mg on 41 - -z, (if ¢ = n, this is the empty string).
6 if Mg accepts then Accept.

7 Reject.

Note that since My and Mg always halt, the algorithm above always halts.

Indeed, if £ = x129 - - 2, € Lx R, then there exists i € {0,1,...,n} such that y = 1 ---x; €
L and z = 41 -+ -z € R, which implies that y € L(My) and z € L(Mpg). This implies that
the algorithm above accepts x on or before iteration 1.

On the other hand, if the algorithm accepts x = x1---x,, then there must exist i €
{0,1,...,n} such that zy---x; € L(Mp) and ;11 -+ -z, € L(Mpg), so we have z € L x R. 4

Problem 5 (7 points). Let M; denote the i-th Turing machine. Show that the language
L = {(i,7) : there is some input on which both M; and M; halt}
is undecidable.

Solution. We will reduce L to the universal language L, = {(M,w) : w € L(M)}.
Suppose toward a contradiction that L is decidable, that is, suppose that there exists a
Turing machine My, that decides L. Consider then the following algorithm.

Algorithm 5.1: Deciding L,, from L.

1 On input (M, w), compute i such that M; is the Turing machine with the following
algorithm: “On input z, run M on w. If M accepts, accept; otherwise loop forever.”.

2 Run My, on input (i,1).

3 if My accepts then Accept.

4 else Reject.

Note that since My, always halts, the algorithm above always halts.
Note also that if 7 is the index computed by the algorithm above for the input (M, w), then
we have

w e L(M) = L(M;) =X% w ¢ L(M) = M, never halts on any input.

Hence (M,w) € L, if and only if (i,4) € L, which implies that the algorithm above de-
cides L,, a contradiction. N

Problem 6 (10 points). Prove Rice’s Theorem that every nontrivial property of r.e. languages
is undecidable.

Solution. Rice’s Theorem is the following.

Theorem. Let P be a subset of all r.e. languages that is not trivial (that is, there is at least
one r.e. language in P and at least one r.e. language not in P) and let

Lp = {(M): L(M) € P}.

Then L,, is undecidable.



Proof. Note that if P is the complement of P with respect to the set of all r.e. languages,
then Lp:E: {{(M): L(M) ¢ P}.
This means that by possibly replacing P with P, we may suppose without loss of generality
that @ ¢ P (i.e., the empty language is not in P).
Since P is non-trivial, we know that there exists L € P, and since L is r.e., we know that
there exists a Turing machine My, such that L(Mp) = L.
Suppose toward a contradiction that Lp is decidable, that is, there exists a Turing ma-
chine Mp that decides Lp. Consider then the following algorithm.
Algorithm 6.1: Deciding L,, from Lp.
1 On input (M, w), let M’ be the Turing machine associated with the algorithm: “On
input , run M on w. If M accepts, run My, on x and return its result. If M rejects,
then reject.”.
2 Run Mp on M’'.
3 if Mp accepts then Accept.
4 else Reject.

Note that since Mp always halts, the algorithm above always halts.
Note also that if M’ is the Turing machine computed by the algorithm above for the in-
put (M, w), then we have
L(Myp), ifwe L(M);
o, if wé¢ L(M);
_JL, fwe L(M);
e, ifwé¢ L(M).

Hence (M,w) € L, if and only if (M') € Lp (since & ¢ P and L € P), so the algorithm
above decides L,, a contradiction. |

N



