CMSC 28100-1 / MATH 28100-1 Introduction to Complexity Theory Fall 2017 – Homework 7

November 9, 2017

Exercise 1. Suppose $T: \mathbb{N} \to \mathbb{N}$ is a function with $T(n) \ge n+1$ such that there exists a *single tape* nondeterministic Turing machine M_T such that for every input x of length n, all branches of computation of M_T on x take time at most T(n) (i.e., the machine M_T is T(n)-time bounded) and at least one branch of computation of M_T takes time exactly T(n).

Show that a k-tape nondeterministic Turing machine running in a nondeterministic time T(n) can be simulated by a 2-tape nondeterministic Turing machine running in nondeterministic time O(T(n)). Note that, unlike the case of deterministic time, there is no additional $\log(T(n))$ factor. Only state essential ideas (i.e., why we don't need the extra $\log(T(n))$ factor) in plain English like an algorithm.

Exercise 2. Show that if $DSPACE(n) \subseteq P$, then PSPACE = P. Recall that $PSPACE = \bigcup_{k \ge 1} DSPACE(n^k)$. Hint: padding and PSPACE-completeness.

Exercise 3. Show that $DSPACE(n) \neq P$. Hint: reinspect Exercise 2 under the light of hierarchy theorems.

Exercise 4. Show that $NSPACE(n) \neq P$.