
CMSC 28100-1 / MATH 28100-1

Introduction to Complexity Theory

Fall 2017 – Homework 7

Solution

November 17, 2017

Exercise 1. Suppose T : N→ N is a function with T (n) > n + 1 such that there exists a single
tape nondeterministic Turing machine MT such that for every input x of length n, all branches
of computation of MT on x take time at most T (n) (i.e., the machine MT is T (n)-time bounded)
and at least one branch of computation of MT takes time exactly T (n).

Show that a k-tape nondeterministic Turing machine running in a nondeterministic time T (n)
can be simulated by a 2-tape nondeterministic Turing machine running in nondeterministic
time O(T (n)). Note that, unlike the case of deterministic time, there is no additional log(T (n))
factor. Only state essential ideas (i.e., why we don’t need the extra log(T (n)) factor) in plain
English like an algorithm.

Solution. Let N be the k-tape nondeterministic Turing machine to be simulated and let us
describe the algorithm of the 2-tape Turing machine M that is going to simulate it.

The first tape of M has two tracks, with the input starting on the first track.
We start by copying the input x from the first track to the second track and rewind the

head of the first tape to the beginning. Then we run MT on the second track of the first tape
(recall that MT has a single tape), writing a mark on the second tape for every step that MT

takes. This means that by the end of the execution of MT , the second tape has at most T (|x|)
marks and in at least one branch of computation, it has exactly T (|x|) marks.

We then erase the second track of the first tape and transfer all marks from the second tape
to the second track of the first tape.

Now we nondeterministically guess m = T (|x|) transitions t1, . . . , tm of N writing them in
the second tape (we count these transitions by looking at the marks in the second track of the
first tape), and rewinding it by the end.

We then simulate each tape of N independently in the first tape of M according to t1, . . . , tm.
The first tape simulated starts with x (which is still in the first track of M) and all others start
empty. In each simulation, we proceed according to t1, . . . , tm altering the first tape. If any
guess ti is wrong (i.e., the symbol read does not match the one we guessed we would read), we
reject. If all simulations are correct and we halt in an accepting state, then we accept; otherwise,
we reject.

Let us now show that L(M) = L(N). It is easy to see that M can only accept words that N
accepts. On the other hand, if N accepts a word x, then at least one branch of M correctly
guesses the full accepting computation of N on x, so M accepts x.

Let us now analyze the time complexity of M .

1

Copying the input from the first track to the second track and rewinding takes time at
most 2n + 2.

Running MT takes time at most T (n) and by the end of this execution, the second track
has at most T (n) symbols, so erasing it takes time at most 3T (n) + 6.

Transferring all marks takes time at most T (n) + 2.
Making the guesses of the transitions takes time at most 2T (n) + 4.
Finally, each simulation takes time 2T (n) + 4 (the extra factors account for the time we

spend erasing the first tape by the end and rewinding the second tape).
Therefore M runs in time at most O(T (n)) as desired. /

Exercise 2. Show that if DSPACE(n) ⊆ P, then PSPACE = P. Recall that PSPACE =⋃
k>1 DSPACE(nk). Hint: padding and PSPACE-completeness.

Solution. Recall first that the problem QBF of quantified boolean formula satisfiability is PSPACE-
complete and QBF ∈ DSPACE(n2).

Recall also the definition of pad: Σ∗ × N→ Σ∗. We have

pad(x, n) = x$i,

where i = max{n− |x|, 0}.
Finally, recall that if L ⊆ Σ∗ and f : N→ N, then we have

pad(L, f(n)) = {pad(x, f(|x|)) : x ∈ L}.

Since n2 is space constructible, the above readily implies that

pad(QBF, n2) ∈ DSPACE(n).

This is because checking the formatting x$i in pad(QBF, n2) takes space at most n2 and checking
if x ∈ L for a well-formatted x$i string (i.e., such that i = |x|2 − |x|) takes space |x|2, which is
the length of the input.

Note also that QBF is polynomially reducible to pad(QBF, n2) as we can simply compute |x|2
and pad the input. This implies that pad(QBF, n2) is PSPACE-complete.

But then, since pad(QBF, n2) ∈ DSPACE(n), it follows that if DSPACE(n) = P, then PSPACE =
P (since every PSPACE problem can be reduced to pad(QBF, n2) in polynomial time and pad(QBF, n2)
would be solvable in polynomial time). /

Exercise 3. Show that DSPACE(n) 6= P. Hint: reinspect Exercise 2 under the light of hierarchy
theorems.

Solution. Suppose toward a contradiction that DSPACE(n) = P. By Exercise 2, we know
that PSPACE = P. In particular, we have DSPACE(n2) ⊆ PSPACE = P = DSPACE(n).

But since limn→∞ n/n2 = 0 and n2 is space constructible (and n 6 n2), by the Space
Hierarchy Theorem, we know that DSPACE(n) (DSPACE(n2), so the above is a contradiction.

/

Exercise 4. Show that NSPACE(n) 6= P.

Solution. Suppose toward a contradiction that NSPACE(n) = P. But then we have DSPACE(n) ⊆
NSPACE(n) = P, which by Exercise 2 implies that PSPACE = P. In particular, we have DSPACE(n3) ⊆
PSPACE = P = NSPACE(n).

By Savitch’s Theorem, we have NSPACE(n) ⊆ DSPACE(n2), so the above becomes DSPACE(n3) ⊆
DSPACE(n2).

2

But since limn→∞ n2/n3 = 0 and n3 is space constructible (and n2 6 n3), by the Space
Hierarchy Theorem, we know that DSPACE(n2) (DSPACE(n3), so the above is a contradic-
tion. /

3

