
CMSC 28100-1 / MATH 28100-1

Introduction to Complexity Theory

Fall 2017 – Homework 4

Solution

October 19, 2017

Exercise 1 (HMU 9.3.1). Show that the set of Turing machine codes for TMs that accept all
inputs that are palindromes (possibly along with other inputs) is undecidable, that is, show
that the language

L = {〈M〉 : ∀w ∈ Σ∗, (w = wR =⇒ w ∈ L(M))}

is undecidable, where wR denotes the reverse of the string w.

Solution. Let P be the language of palindromes and consider the class C of all recursively
enumerable languages R such that P ⊆ R. Note that ∅ /∈ C and Σ∗ ∈ C, hence C is a non-trivial
class of recursively enumerable languages.

Note also that the language of all TMs that accept all inputs that are palindromes is precisely

L = {〈M〉 : P ⊆ L(M)} = {〈M〉 : L(M) ∈ C},

hence by Rice’s Theorem, it follows that L is undecidable. /

Exercise 2 (HMU 9.3.2). The Big Computer Corp. has decided to bolster its sagging market
share by manufacturing a high-tech version of the Turing machine, called BWTM, that is
equipped with bells and whistles. The BWTM is basically the same as your ordinary Turing
machine, except that each state of the machine is labeled either a “bell-state” or a “whistle-
state”. Whenever the BWTM enters a new state, it either rings the bell or blows the whistle,
depending on which type of state it has just entered. Prove that it is undecidable whether a
given BWTM M , on given input w, ever blows the whistle.

Solution. Suppose not, that is, suppose that there exists a Turing machine D that decides the
language

W = {〈M,w〉 : M is a BWTM that blows the whistle at some point on input w}.

Recall that the language

U = {〈M,w〉 : M is a TM and w ∈ L(M)}

is undecidable.

1

Consider now the Turing machine A given by the following algorithm.

Algorithm 2.1: Algorithm for the TM A.

1 On input 〈M,w〉, let M̃ be the BWTM obtained from M by letting all states be bell

states, adding an extra state qf , which is the unique final state of M̃ and is a whistle
state, and adding transitions (q, σ) 7→ (qf , σ, R) for every σ ∈ Σ and every q that is a

final state of M that does not have a transition for (q, σ). The initial state of M̃ is the
same as the initial state of M and all other transitions of M are preserved.

2 Run D on input 〈M̃, w〉.
3 if D accepts then Accept.
4 else Reject.

Note first that A always halts since D always halts.
Note now that if w ∈ L(M), then the machine M̃ built by A above gets to a final state of M

when given input w. It then transitions to the newly added state qf , which blows the whistle,

hence 〈M̃, w〉 ∈W , which implies that D accepts 〈M̃, w〉, hence A accepts 〈M,w〉.
On the other hand, if w /∈ L(M), then the machine M̃ never transitions to qf when given

input w, since for this to happen, the machine M would have to halt on a final state. Since qf
is the only whistle state, it follows that 〈M̃, w〉 /∈W , hence A rejects 〈M,w〉.

Therefore A decides U , which is a contradiction. /

Exercise 3 (HMU 9.3.3). Show that the language of codes for TMs that, when started with
blank tape, eventually write a 1 somewhere on the tape is undecidable.

Solution. Suppose not, that is, suppose that there exists a Turing machine D that decides the
language

W = {〈M〉 : M writes a 1 somewhere in the tape on empty input}.

Recall that the language

U = {〈M,w〉 : M is a TM and w ∈ L(M)}

is undecidable.
Consider now the Turing machine B given by the following algorithm.

Algorithm 3.1: Algorithm for the TM B.

1 On input 〈M,w〉, let M̃ be the TM that runs M on input w using a symbol 1̃ in place

of 1 in both the execution of M and in w, and if M accepts w, the machine M̃ then
writes a 1 and halts.

2 Run D on input 〈M̃〉.
3 if D accepts then Accept.
4 else Reject.

Since D always halts, we know that B always halts.
Note that from our substitution of 1 by 1̃, we know that during the simulation of M by M̃ ,

no symbol 1 is ever written on the tape. This means that M̃ writes a 1 on the tape if and only
if w ∈ L(M). But this implies that B accepts 〈M,w〉 if and only if w ∈ L(M).

Therefore B decides U , a contradiction. /

Exercise 4 (HMU 9.3.5). Let L be the language consisting of pairs of TM codes plus an
integer (M1,M2, k) such that L(M1) ∩ L(M2) contains at least k strings. Show that L is
recursively enumerable, but not recursive.

2

Solution. Let us first show that the language

P = {〈M1,M2, k〉 : |L(M1) ∩ L(M2)| > k}

is recursively enumerable.
Consider the Turing machine R given by the following algorithm.

Algorithm 4.1: Algorithm for the TM R.

1 Given input 〈M1,M2, k〉, let T1 ← ∅ and T2 ← ∅.
2 for n← 0, 1, . . . do
3 Let Wn be the set of all input strings of length at most n.
4 for w ∈Wn do
5 Run M1 on input w for n steps.
6 if M1 accepts then T1 ← T1 ∪ {w}.
7 Run M2 on input w for n steps.
8 if M2 accepts then T2 ← T2 ∪ {w}.
9 if |T1 ∩ T2| > k then Accept.

Note that R never gets stuck inside the inner “for” loop, that is, if R loops forever, then it
must continuously increment n in the outer “for” loop.

Note that if |L(M1)∩L(M2)| > k, then for w1, . . . , wk ∈ L(M1)∩L(M2) distinct, if we let n0
be the maximum length of w1, . . . , wk, then w1, . . . , wk ∈ Wn0 . Furthermore, we know that for
every i ∈ {1, . . . , k}, there exists n1i and n2i such that M1 accepts w1 within n1i steps and M2

accepts w2 within n2i steps.
This implies that if M is given input 〈M1,M2, k〉, then when it gets to

n = max{n0, n11, n12, . . . , n1k, n21, n22, . . . , n2k},

all w1, . . . , wk are added both to T1 and T2, which implies that M accepts 〈M1,M2, k〉.
On the other hand, if |L(M1) ∩ L(M2)| < k, then M never accepts 〈M1,M2, k〉, since for

this to happen we would need that |T1∩T2| > k at some point, but T1 only contains words that
are accepted by M1 and T2 only contains words that are accepted by M2.

Therefore L(R) = P , hence P is recursively enumerable.

Let us now prove that R is not recursive. Suppose not, that is, suppose that there exists a
Turing machine D that decides D.

Recall that the language

U = {〈M,w〉 : M is a TM and w ∈ L(M)}

is undecidable.
Consider the Turing machine C given by the following algorithm.

Algorithm 4.2: Algorithm for the TM C.

1 On input 〈M,w〉, let M1 be the Turing machine that accepts all inputs and let M2 be the
Turing machine that runs M on w, and if M accepts, then M2 accepts (regardless of its
input).

2 Run D on input 〈M1,M2, 1〉.
3 if D accepts then Accept.
4 else Reject.

Note that C always halts.
If w ∈ L(M), then we have L(M2) = Σ∗ = L(M1), hence 〈M1,M2, 1〉 ∈ P , so C ac-

cepts 〈M,w〉.

3

On the other hand, if w /∈ L(M), then we have L(M2) = ∅, hence 〈M1,M2, 1〉 /∈ P , so C
rejects 〈M,w〉.

Therefore C decides U , a contradiction. /

4

