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Exercise 1 (HMU 8.2.2). Design Turing machines for the following languages.

(a) The set of strings with an equal number of 0’s and 1’s.

(b) {anbncn : n > 1}.

(c) {wwR : w is any string of 0’s and 1’s}, where wR is the reverse of a string. For instance,
we have 10010R = 01001.

Solution. For item (a), consider the Turing machine M with transition function δ given by

0 1 B ∗
q0 (q1, ∗, R) (q2, ∗, R) (qf , B, L) (q0, ∗, R)
q1 (q1, 0, R) (q3, ∗, L) − (q1, ∗, R)
q2 (q3, ∗, L) (q2, 1, R) − (q2, ∗, R)
q3 (q3, 0, L) (q3, 1, L) (q0, B,R) (q3, ∗, L)
qf − − − −

where q0 is the initial state and qf is the accepting state.
Let us prove that M decides the language L of strings with an equal number of 0’s and 1’s.
First, we clearly have that the empty string ε is in L(M).
Fix now an input x ∈ {0, 1}∗ of length n > 0 and consider the computation of M on input x.
First note that M only changes symbols in the tape from 0 to ∗ or from 1 to ∗, and these

happen only in states q0, q1 and q2. This in particular implies that the tape of M during the
computation for x is always a string of length n in {0, 1, ∗}n.

Let us enumerate these non-blank positions in the tape 1, . . . , n and let 0 and n+ 1 be the
positions immediately before and after these respectively.

Note now that if M is in one of the state q0, q1 or q2, the previous movement must have
been R. On the other hand, if M is in state q3, the previous movement must have been L.

For i ∈ {0, 1, 2, 3}, let Pi be the set of all positions of the head of M when it is in state q0.
We now claim that

P0 ⊆ {1, . . . , n+ 1}; P1 ⊆ {1, . . . , n+ 1};
P2 ⊆ {1, . . . , n+ 1}; P3 ⊆ {0, . . . , n}.

(1)

Suppose not and consider the first time in which the head of M violates the above (this is
clearly not before the first step).
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If M is in state q0, q1 or q2, then the previous movement must have been R, so the current
position must be n+ 2 (as this is the first time of violation of the property). This means that
previous symbol read was the blank symbol B at position n+1, so the previous state must have
been q3. But this contradicts the choice of the first moment when the property was violated as
the position in q3 was n+ 1 in the previous step.

Suppose then that M is in state q3 in the first moment of violation. Then the previous
movement must have been L and the previous state must have been one of q1, q2 or q3. If
it was one of the first two, we are done by the choice of the first moment of violation, so the
previous state must have been q3. However, this means that the previous symbol read must be
non-blank, so the previous position must have been in {1, . . . , n}, which implies that the current
position is in {0, . . . , n}, a contradiction.

Therefore (1) holds.
We now claim that M never keeps looping in the same state. Indeed, for M to remain in

one of the states q0, q1 or q2, it must keep reading non-blank symbols and keep moving right, so
it must eventually reach a blank symbol, which would make it leave these states. On the other
hand, for M to remain in q3, it must keep reading non-blank symbols and keep moving left, so
it must eventually reach a blank symbol, which would make it leave q3.

Note now that every time M leaves one of the states q0, q1 or q2, one 0 or 1 gets replaced
with ∗. This means that either eventually M halts or all positions 1, . . . , n become ∗. If the
latter happens in any of q0, q1 or q2, then M moves the head to the right until it reaches a blank
symbol, then halts. If this happens in q3, then M moves the head to the left until it reaches a
blank symbol, then transitions to q0 and by the above it will halt later.

Therefore M always halts.
We claim now that when M transitions into q0 from a different state, then the head must

be in position 1. Indeed, the only state other than q0 that transitions to q0 is q3, and it can
only do so when it reads B and since P3 ⊆ {0, . . . , n}, it follows that the blank read must be of
position 0 and M then goes q0 in position 1.

We claim now that when M transitions into q1 or q2 from a different state all non-blank
symbols to the left of the head are ∗. Indeed, for i ∈ {1, 2}, the only state that transitions to qi
that is not qi is q0. Consider the last time before the current time in which M transitioned to q0
from another state. We know that the head must have been in position 1, but inspecting the
transitions of q0, we see that M will remain in q0 and moving to the right while it reads ∗ and
in the first occurence of a non-∗ symbol, it will transition to qi, hence the claim follows.

Let |w|a be the number of occurrences of the symbol a in the string w and let d(w) =
|w|1 − |w|0.

We claim now the following.

• If M is in state q0 with w in its tape, then d(w) = d(x).

• If M is in state q1 with w in its tape, then d(w) = d(x) + 1.

• If M is in state q2 with w in its tape, then d(w) = d(x)− 1.

• If M is in state q3 with w in its tape, then d(w) = d(x).

Suppose not and consider the first time when the above is violated (this is clearly not before
the first step). Since when M stays in the same state it does not replace any symbol, it follows
that the previous state must have been different than the current one. But by our choice of the
first time of violation, in the previous step the above was true and by inspecting the possible
transitions that change state, we conclude that the above must hold for the current state (it is
just a boring case analysis).
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Let us now prove that if M accepts x, then x ∈ L. Note that for M to accept x, we must
read B in q0. Let w be the content of the tape at this moment.

The last time in which M transitioned into q0 from another state, we know that it was in
position 1 and from the transitions of q0, we know that M will scan all symbols of w and they
must all be ∗, which implies

0 = d(w) = d(x),

hence x ∈ L.
Let us finally prove that if M rejects x, then x /∈ L. Note that for M to reject x, we must

read B in qi for some i ∈ {1, 2}. Let w be the content of the tape at this moment.
The last time in which M transitioned into qi from another state, we know that all symbols

to the left of the head were ∗ and from the transitions of qi, it follows that M must read all
other symbols in the tape, and they are all either i− 1 or ∗, which means that we have

0 6 |w|i−1 − |w|2−i = (−1)id(w) = (−1)i(d(x)− (−1)i)

= (−1)id(x)− 1,

which implies d(x) 6= 0, hence x /∈ L.
Therefore, since M always halts, it follows that M decides L.

For item (b), consider the Turing machine with transition function δ given by

a b c B ∗ # %

q0 (q1, ∗, R) − − − − (q6,#, R) −
q1 (q1, a, R) (q3,#, R) − − − (q2,#, R) −
q2 − (q3,#, R) − − − (q2,#, R) −
q3 − (q3, b, R) (q5,%, L) − − − −
q4 − − (q5,%, L) − − − (q4,%, R)
q5 (q5, a, L) (q5, b, L) (q5, c, L) − (q0, ∗, R) (q5,#, L) (q5,%, L)
q6 − − − (qf , B,R) (q6, ∗, R) (q6,#, R) (q6,%, R)
qf − − − − − − −

where q0 is the initial state and qf is the accepting state.
Let us prove that M decides the language L = {akbkck : k > 1}.
First, it is clear that M rejects the empty string ε.
Fix now an input x ∈ {a, b, c}∗ of length n > 0 and consider the computation of M on

input x.
As in item (a), note that M only changes symbols from a, b or c to ∗, # or %, which implies

that the tape of M is always a string of length n in {a, b, c, ∗,#,%}n, and as before, let us
enumerate these positions as 1, . . . , n and let 0 and n + 1 be the positions immediately before
and after respectively.

Note also that ∗ can only replace an a and a can only be replaced by ∗. The same also holds
for the pairs (#, b) and (%, c). This means that at any time if the content of the tape is w, then
we have

|x|a = |w|a + |w|∗; |x|b = |w|b + |w|#; |x|c = |w|c + |w|%. (2)

We now claim that the following holds.

• If M is in state q0, then the content to the left of the head is ∗k for some k > 0.

• If M is in state q1, then the content to the left of the head is ∗k1ak2 for some k1, k2 > 0.
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• If M is in state q2, then the content to the left of the head is ∗k1ak2#k3 for some k1, k2, k3 >
0.

• If M is in state q3, then the content to the left of the head of M is ∗k1ak2#k3bk4 for
some k1, k2, k3, k4 > 0.

• If M is in state q4, then the content to the left of the head is ∗k1ak2#k3bk4%k5 for
some k1, k2, k3, k4, k5 > 0.

• If M is in state q5, then the content to the left of the head is ∗k1ak2#k3bk4%k5 for
some k1, k2, k3, k4, k5 > 0 such that ki = 0 implies ki+1 = 0 for all i ∈ {1, . . . , 4}.

• IfM is in state q6, then the content to the left of the head is ∗k1#k2%k3 for some k1, k2, k3 >
0 such that ki = 0 implies ki+1 = 0 for all i ∈ {1, 2}.

Suppose not and consider the first time t in which the above is violated. By inspecting the
table of transitions, one can conclude (after a boring case analysis) that time t − 1 must have
also violated the property.

With a proof analogous to the one in item (a), we get also that M cannot loop in the same
state, which implies that M eventually halts by again a proof analogous to the one in item (a).

We claim now that whenever M is in q0 and the content of the tape is w, we have

|w|∗ = |w|# = |w|%. (3)

This is indeed true in the beginning and assuming inductively it was true the last time M was
in q0, it is easy to see that the next states until the occurrence of q0 must have been a sequence
of qk11 q

k2
2 q

k3
3 q

k4
4 q

k5
5 for k1, k2, k3, k4, k5 > 0 and inspecting the transition table, it follows that

exactly one new of each ∗, # and % must have been written, so the property remains true.
Finally, note that this means that if M is in state q6 and the content of the tape is w, then

we must have (3) as well. Since when in q6 the machine M keeps reading symbols to the right
and the part to left of the head always contains ∗k1#k2%k3 for some k1, k2, k3 > 0, it follows
that M accepts x if and only if (3) and

|w|a = |w|b = |w|c = 0.

Putting this together with (2), it follows that M accepts x if and only if x ∈ L, hence M
decides L (as it always halts).

For item (c), consider the Turing machine with transition function δ given by

0 1 B

q0 (q1, B,R) (q3, B,R) (qf , B,R)
q1 (q1, 0, R) (q1, 1, R) (q2, B, L)
q2 (q5, B, L) − −
q3 (q3, 0, R) (q3, 1, R) (q4, B, L)
q4 − (q5, B, L) −
q5 (q5, 0, L) (q5, 1, L) (q0, B,R)
qf − − −

where q0 is the initial state and qf is the accepting state.
Let us prove that M decides the language L = {wwR : w ∈ {0, 1}∗}.
To prove this, we will first prove that for every x ∈ {0, 1}∗, we have x ∈ L if and only if one

of the following holds.
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• We have x = ε.

• We have x = 0y0 for y ∈ L.

• We have x = 1y1 for y ∈ L.

The proof is by induction in the length n of x. For n = 0, this is trivial. Suppose then
that n > 0 and that the result holds for strings of smaller lengths.

If x ∈ L, then we have x = wwR. Writting w = σz for σ ∈ {0, 1}, we have x = σzzRσ and
setting y = zzR, we have y ∈ L. On the other hand, if x = σyσ for some σ ∈ {0, 1} and y ∈ L,
then we can write y = wwR, which gives x = (σw)(σw)R, hence x ∈ L.

By inspecting the transition table of M , we see that M can only erase symbols (i.e., replace
them by blanks).

We claim that M can only erase symbols at the ends of the tape (i.e., the tape always
contains a word in {0, 1}∗ with infinitely many blanks to both sides, but not in the middle).
Suppose not and consider the first moment when a symbol not at the end of the tape is erased.
But this must have been erased in one of the states q0, q2 or q4. If it is q0, then the previous
state must have been q5 (it cannot be in the very start of the computation since the erasing is
not at the end of the tape), so there must be a blank to the left of the head, which contradicts
the fact that the erasing was not at the end of the tape. If it is q2 or q4, then the previous
state must have been either q1 or q3, so there must be a blank to the right of the head, which
contradicts the fact that the erasing was not at the end of the tape.

Analogously to the previous items, one can prove that the head of M is always at distance
at most 1 from a non-blank symbol if one exists.

Note now that by inspecting the table, we see that the only possible progression of states is
of the form

q0q
k1
i1
qi1+1q

m1
5 q0q

k2
i2
qi2+1q

m2
5 · · · q0q

kt
it
qit+1q

mt
5 · · · ,

for some i1, i2, . . . , it ∈ {1, 3} and k1, . . . , kt,m1, . . . ,mt > 0 and some t > 0. Furthermore each
new time M goes through q0, it has erased exactly two symbols. This immediately implies
that M always halts.

Moreover, in each of the blocks q0q
ku
iu
qiu+1q

mu
5 , the symbol that is erased on q0 at the left

end of the tape is the same as the one erased in qiu+1 at the right end of the tape.
Therefore, since M accepts x if and only if it erases the whole string x, i.e., if and only if x

is of the form

σ1σ2 · · ·σk−1σkσkσk−1 · · ·σ2σ1,

that is, if and only if x ∈ L.
Therefore M decides L. /

Exercise 2 (HMU 8.2.3). Design a Turing machine that takes as input a number N in binary
and adds 1 to it. To be precise, the tape initially contains a $ followed by N in binary. The
head is initially scanning the $ in state q0. Your Turing machine should halt with N + 1 in
binary on its tape, scanning the leftmost symbol of N + 1, in state qf . You may destroy the $
in creating N + 1, if necessary. For instance, q0$10011 7→ $qf10100 and q0$11111 7→ qf100000.

(a) Give the transitions of your Turing machine, and explain the purpose of each state.

(b) Show the sequence of instantaneous descriptions (IDs) of your Turing machine when given
input $111.
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Solution. Consider the Turing machine with transition function δ given by

0 1 $ B

q0 (q0, 0, R) (q0, 1, R) (q0, $, R) (q1, B, L)
q1 (q2, 1, L) (q1, 0, L) (q2, 1, L) −
q2 (q2, 0, L) (q2, 1, L) (qf , $, R) (qf , B,R)
qf − − − −

where q0 is the initial state and qf is the accepting state.
The state q0 simply serves to move the head to the end of the input.
The state q1 means that the digit under the head needs to be incremented.
The state q2 means that the digit under the head does not need to be incremented (neither

do all digits to the left), hence we only need to put the head in the leftmost digit, which is also
the function of state q2.

For input $111, the sequence of instantaneous descriptions is

q0$111 7→ $q0111 7→ $1q011 7→ $11q01 7→ $111q0B

7→ $11q11 7→ $1q110 7→ $q1100 7→ q1$000

7→ q2B1000 7→ qf1000. /

Exercise 3 (HMU 8.2.5). Recall that the language L(M) defined by a Turing machine M is
the set of input strings x such that M on input x halts in an accepting state. (M halts when
there is no entry in the transition function for the current state symbol pair.)

Consider the Turing machine M with states {q0, q1, q2, qf}, input alphabet {0, 1}, tape al-
phabet {0, 1, B}, start state q0, accepting state qf , and transition function δ. For each of the
following transition functions δ, informally but clearly describe the language L(M) if δ consists
of the following set of rules.

(a) δ is given by

δ(q0, 0) = (q1, 1, R); δ(q1, 1) = (q0, 0, R); δ(q1, B) = (qf , B,R).

(b) δ is given by

δ(q0, 0) = (q0, B,R); δ(q0, 1) = (q1, B,R);

δ(q1, 1) = (q1, B,R); δ(q1, B) = (qf , B,R).

(c) δ is given by

δ(q0, 0) = (q1, 1, R); δ(q1, 1) = (q2, 0, L);

δ(q2, 1) = (q0, 1, R); δ(q1, B) = (qf , B,R).

Solution. For item (a), we have

L(M) = {0} · {10}∗ = {0(10)n : n > 0}.

For item (b), we have

L(M) = {0}∗ · {1}+ = {0n1m : n > 0,m > 0}.

For item (c), we have

L(M) = {0} · {1}∗ = {01n : n > 0}. /
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Exercise 4 (HMU 8.4.3). Informally but clearly describe nondeterministic Turing machines
(multiple tape, if you like) that accept the following languages. Try to take advantage of
nondeterminism to avoid iteration and save time in the nondeterministic sense. That is, prefer
to have your nondeterministic Turing machine nondeterministically branch a lot, while each
branch is short.

(a) The language of all strings of 0’s and 1’s that have some string of length 100 that repeats,
not necessarily consecutively. Formally, this language is the set of strings of 0’s and 1’s of
the form wxyxz, where |x| = 100, and w, y and z are strings of arbitrary length (possibly
zero).

(b) The language of all strings of the form w1#w2# · · ·#wn for any n such that each wi is a
string of 0’s and 1’s, and for some j, wj is the integer j in binary.

(c) The language of all strings of the same form as (b), but for at least two values of j, we
have wj equal to j in binary.

Solution. For item (a), consider the following nondeterministic algorithm.
We nondeterministically write on the second tape a string s of {0, 1}100. Then we start

reading the input tape z1z2 · · · zn from left to right and nondeterministically and choose a
position k in it (if the input ends before we choose k, we reject). We then compare xk · · ·xk+99

with s, if they are different, we reject, otherwise we continue reading the input from left to right
starting at xk+99 and choose a position ` in it (if the input ends before we choose `, we reject).
We then compare x` · · ·x`+99 with s, if they are equal we accept, otherwise we reject.

For item (b), consider the following nondeterministic algorithm.
We start by reading the input tape and counting the number k of occurences of #, writing k

in the second tape. We then nondeterministically write a number j in {1, . . . , k} on the third
tape (this can be done by nondeterministically writing a string of 0’s and 1’s of length at most
the length of the binary representation of k and comparing if the resulting number j is non-zero
and at most k, if it is not, we simply reject the input).

Finally, we read the input again from left to right and find the (j − 1)-th occurence of #
(using another tape to count) and we compare the string between the (j − 1)-th and the j-th
occurrence of # with j, if they are equal we accept, otherwise we reject.

For item (c), we use the same algorithm as item (b), except that we choose nondeterminis-
tically two numbers j1, j2 ∈ {1, . . . , k}, compare them, if they are equal we reject, otherwise we
proceed to the final part of comparing the string between the (ji−1)-th and the ji-th occurence
of # with ji. If for both i = 1 and i = 2 this comparison is true we accept, otherwise we
reject. /
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