CMSC 28100-1 / MATH 28100-1 Introduction to Complexity Theory Fall 2017 – Homework 2

October 7, 2017

Exercise 1. The *Knapsack Problem* is defined as follows. The input is a set S of |S| = n items, each with a positive integer weight w_i and a non-negative value v_i $(i \in S)$, a positive integer knapsack capacity W, and a positive integer target total value V. The output should be "Yes" if there is a subset $S' \subseteq S$ of items such that $\sum_{i \in S'} w_i \leq W$ and $\sum_{i \in S'} v_i \geq V$ and should be "No" otherwise.

- (a) Give an algorithm for the Knapsack Problem. If you give a dynamic programming algorithm, state the precise "English" definitions of your sub-problems, state base cases, and the recurrence. Try to make it as efficient as you can. Prove its correctness and analyze its running time. Does it run in polynomial time?
- (b) Define the εW -Knapsack Problem for a fixed constant ε as the Knapsack Problem above, except that you have the guarantee that, in the input, we have $\varepsilon W \leqslant w_i$ for every $i \in S$ (i.e., there are no arbitrarily small weights). Can you come up with a polynomial time algorithm for this problem? Or is your algorithm for part (a) already polynomial time for this problem? Why? Analyze. (Note: the expected answer is short and ε is not part of the input.)
- (c) Define the εV -Knapsack Problem for a fixed constant ε as the Knapsack Problem above, except that you have the guarantee that, in the input, we have $\varepsilon V \leqslant v_i$ for every $i \in S$ (i.e., there are no arbitrarily small values). Can you come up with a polynomial time algorithm for this problem? Why? Analyze. (Note: the expected answer is short and ε is not part of the input.)

Exercise 2. We are given an array A[1..n] of n rational numbers with $n \ge 3$ and the special property that $A[1] \ge A[2]$ and $A[n-1] \le A[n]$. We say that an element A[x] is a local minimum of A if $A[x-1] \ge A[x]$ and $A[x] \le A[x+1]$. First, note that, given the condition $A[1] \ge A[2]$ and $A[n-1] \le A[n]$, the array A must have at least one local minimum, and it is trivial to find it in $O(b \cdot n)$ time, where b is the largest bitlength of an element of A. Give an algorithm to find and return a local minimum of A in $O(b \cdot (\log n)^2)$ time. Analyze the running time of your algorithm. Prove the correctness of your algorithm.

Exercise 3. A cycle in an undirected simple graph G = (V, E) is a sequence of vertices

$$(v_0, v_1, \ldots, v_k)$$

with $v_0 = v_k$, $k \ge 3$ and $\{v_i, v_{i+1}\} \in E(G)$, $v_i \ne v_{i+1}$ and $v_i \in V(G)$ for every $i \in \{0, 1, ..., k-1\}$. In this exercise, we consider that access to a graph G with vertex set $V(G) = \{1, ..., n\}$ is given by the following subroutines.

- The subroutine vertices() returns the number of vertices n in time $O(\log n)$ (which is the bitlength of n).
- The subroutine nextneighbor(i, j) returns the smallest $k \ge j$ such that $\{i, k\} \in E(G)$ and returns "NONE" if no such k exists. This subroutine also takes time $O(\log n)$.

Design an algorithm that, using the subroutines above, runs in time $O(n \log n)$ and returns a cycle of the graph G if one exists and returns "ACYCLIC" if G does not contain any cycle. Prove the correctness of your algorithm.

Observation: the graph may have much more than O(n) edges (it can have up to $\Omega(n^2)$ edges), so your algorithm cannot inspect all edges of the graph. Note also that your algorithm can only make at most O(n) calls to the subroutines above.