
CMSC 28100-1 / MATH 28100-1

Introduction to Complexity Theory

Fall 2017 – Homework 2

Solution

October 8, 2017

Exercise 1. The Knapsack Problem is defined as follows. The input is a set S of |S| = n items,
each with a positive integer weight wi and a non-negative value vi (i ∈ S), a positive integer
knapsack capacity W , and a positive integer target total value V . The output should be “Yes”
if there is a subset S′ ⊆ S of items such that

∑
i∈S′ wi 6 W and

∑
i∈S′ vi > V and should be

“No” otherwise.

(a) Give an algorithm for the Knapsack Problem. If you give a dynamic programming algo-
rithm, state the precise “English” definitions of your sub-problems, state base cases, and
the recurrence. Try to make it as efficient as you can. Prove its correctness and analyze
its running time. Does it run in polynomial time?

(b) Define the εW -Knapsack Problem for a fixed constant ε as the Knapsack Problem above,
except that you have the guarantee that, in the input, we have εW 6 wi for every i ∈ S
(i.e., there are no arbitrarily small weights). Can you come up with a polynomial time
algorithm for this problem? Or is your algorithm for part (a) already polynomial time for
this problem? Why? Analyze. (Note: the expected answer is short and ε is not part of
the input.)

(c) Define the εV -Knapsack Problem for a fixed constant ε as the Knapsack Problem above,
except that you have the guarantee that, in the input, we have εV 6 vi for every i ∈ S
(i.e., there are no arbitrarily small values). Can you come up with a polynomial time
algorithm for this problem? Why? Analyze. (Note: the expected answer is short and ε is
not part of the input.)

Solution. Before we present the algorithm for item (a), we will prove some properties. First,
we assume without loss of generality that S = {1, . . . , n}.

First, for i ∈ {1, . . . , n} and w ∈ {0, . . . ,W}, let

B(i, w) = max

∑
j∈J

vj : J ⊆ {1, . . . , i} ∧
∑
j∈J

wj 6 w

 .

We now prove a small lemma.

1

Lemma 1.1. For every i ∈ {1, . . . , n} and w ∈ {0, . . . ,W}, we have

B(i, w) =


max{B(i− 1, w), B(i− 1, w − wi) + vi}, if i > 2 and w > wi;

B(i− 1, w), if i > 2 and w < wi;

vi, if i = 1 and w > wi;

0, if i = 1 and w < wi.

Proof. The assertions when i = 1 are trivial.
Suppose then that i > 2.
Clearly we must have B(i, w) > B(i− 1, w) be the definition of B.
Suppose first that w < wi and let us prove the other inequality B(i, w) 6 B(i − 1, w).

Let J ⊆ {1, . . . , i} be such that
∑

j∈J vi = B(i, w) and
∑

j∈J wj 6 w. Since wi > w, we know
that i /∈ J , which immediately implies B(i− 1, w) >

∑
j∈J vj = B(i, w) as desired.

Therefore, when w < wi and i > 2, we have B(i, w) = B(i− 1, w).
It remains to prove the case i > 2 and w > wi. We have already proved that B(i, w) >

B(i−1, w). Let J ⊆ {1, . . . , i−1} be such that
∑

j∈J vi = B(i−1, w−wi) and
∑

j∈J wj 6 w−wi.
Then we have

∑
j∈J∪{i}wj 6 w, which implies B(i, w) >

∑
j∈J∪{i} vj = B(i − 1, w − wi) + vi.

Putting this together with the previously proved inequality, we get

B(i, w) > max{B(i− 1, w), B(i− 1, w − wi) + vi}.

Let us now prove the other inequality. Let J ∈ {1, . . . , i} be such that
∑

j∈J vj = B(i, w)
and

∑
j∈J wj 6 w.

If i ∈W , then we have
∑

j∈J\{i}wj 6 w−wi, which implies B(i−1, w−wi) >
∑

j∈J\{i} vj =
B(i, w)−vi. Hence B(i, w) 6 B(i−1, w−wi)+vi, which implies B(i, w) 6 max{B(i−1, w), B(i−
1, w − wi) + vi}.

On the other hand, if i /∈W , then J ⊆ {1, . . . , i−1}, which implies B(i−1, w) >
∑

j∈J vj =
B(i, w), hence B(i, w) 6 max{B(i− 1, w), B(i− 1, w − wi) + vi}.

Therefore we get

B(i, w) = max{B(i− 1, w), B(i− 1, w − wi) + vi},

as desired. /

Based on Lemma 1.1, since the solution of the problem is simply computing B(n,W) and
testing whether it is greater or equal to V . Consider then the following algorithm.

Algorithm 1.1: Knapsack

1 for w ← 1 to wi do B[1, w]← v1
2 for w ← wi + 1 to W do B[1, w]← 0
3 for i← 2 to n do
4 for w ← 1 to wi do B[i, w]← max{B[i− 1, w], B[i− 1, w − wi] + vi}
5 for w ← wi + 1 to W do B[i, w]← B[i− 1, w]

6 if B[n,W] > V then return “Yes”
7 else return “No”

Clearly the table B[i, w] in Algorithm 1.1 is filled in non-decreasing order of i. Furthermore,
by Lemma 1.1 (and an induction), it follows that B[i, w] is gets the value B(i, w), which implies
that Algorithm 1.1 correctly solves the Knapsack Problem.

It is also straightforward to see that the complexity of Algorithm 1.1 is O(n·W ·bv), where bv
is the maximum bitlength among v1, . . . , vn, V .

2

Unfortunately, the input size is O(n · logW · bv), which implies that Algorithm 1.1 is not
polynomial.

Before we solve the other items, consider the following problem.
Let k ∈ N be fixed. The k-Knapsack Problem is the same as the Knapsack Problem, except

that we also require |S′| 6 k, that is, we want to find a collection of at most k items of maximum
value, not exceeding the maximum weight (here k is not part of the input and is fixed).

Note now that if |S| = n, then

|{S′ ⊆ S : |S′| 6 k}| =
k∑

i=0

ni = O(nk).

This immediately implies that the following algorithm correctly solves the k-Knapsack Prob-
lem in time O(nk+1 · b), where b is the maximum bitlength of w1, . . . , wn, v1, . . . , vn,W, V .

Algorithm 1.2: k-Knapsack

1 for J ⊆ {1, . . . , n} with |J | 6 k do
2 if

∑
j∈J wj 6 W then

3 if
∑

j∈J vj > V then

4 return “Yes”.

5 return “No”.

We can now solve the other items.
First, note that for item (b), since we are guaranteed that wi > εW , then we know that

any J ⊆ {1, . . . , n} with
∑

j∈J wj 6 W must have at most b1/εc items, which implies that

Algorithm 1.2 with k = b1/εc correctly solves the εW -Knapsack Problem in time O(n1/ε · b),
which is polynomial since ε is not part of the input.

Note that Algorithm 1.1 of item (a) does not run in polynomial time even with the guarantee
that wi > εW .

For item (c), since we are guaranteed that vi > εV , then we know that if there exists J ⊆
{1, . . . , n} with

∑
j∈J wj 6 W and

∑
j∈J vj > V , then any subset J ′ ⊆ J with |J ′| > 1/ε must

also satisfy
∑

j∈J ′ wj 6 W and
∑

j∈J ′ vj > V . This implies that Algorithm 1.2 with k = b1/εc
correctly solves the εV -Knapsack Problem in time O(n1/ε · b), which is polynomial. /

Exercise 2. We are given an array A[1..n] of n rational numbers with n > 3 and the special
property that A[1] > A[2] and A[n−1] 6 A[n]. We say that an element A[x] is a local minimum
of A if A[x − 1] > A[x] and A[x] 6 A[x + 1]. First, note that, given the condition A[1] > A[2]
and A[n− 1] 6 A[n], the array A must have at least one local minimum, and it is trivial to find
it in O(b · n) time, where b is the largest bitlength of an element of A. Give an algorithm to
find and return a local minimum of A in O(b · (log n)2) time. Analyze the running time of your
algorithm. Prove the correctness of your algorithm.

3

Solution. Consider the following algorithm.

Algorithm 2.1: Local minimum

1 if n = 3 then return 1.
2 if n = 4 then
3 if A[2] 6 A[3] then return 2.
4 return 3.

5 i← dn/2e.
6 if A[i− 1] < A[i] then return Localminimum(A[1..i]).
7 if A[i] > A[i + 1] then return i− 1 + Localminimum(A[i..n]).
8 return i.

First note that if n > 5, then we must have 3 6 dn/2e 6 n − 2, which implies that the
recursive calls effectively reduce the size of the array and yield an array of size at least 3.
Furthermore, the conditions for the recursive calls ensure that the array A′ passed recursively
satisfies A′[1] > A′[2] and A′[n′ − 1] 6 A′[n′] (where n′ is the size of A′).

It is easy to see that Algorithm 2.1 correctly solves the problem if n = 3 or n = 4.
On the other hand, if n > 5 and we assume by induction that Algorithm 2.1 correctly solves

the problem for arrays of size strictly less than n, then we have two cases.
In the first case, the point i = dn/2e is a local minimum and clearly the algorithm correctly

finds it (the last two “ifs” test false).
In the second case, the point i = dn/2e is not a local minimum, so we must either have A[i−

1] < A[i] or A[i] > A[i+ 1]. The first implies that A has a local minimum in 2, . . . , i− 1, which,
by inductive hypothesis, is correctly found by the recursive call. The latter implies that A has
a local minimum in i + 1, . . . , n, which by inductive hypothesis (and noting that we correctly
adjust the index returned), is correctly found by the recursive call.

Therefore, Algorithm 2.1 correctly solves the problem.

Let us now analyze the time complexity of the algorithm. Let T (n, b) be the time complexity
of Algorithm 2.1 when A has n entries, each with bitlength at most b. By inspecting the
algorithm (and since n− dn/2e = bn/2c), it is clear that we have

T (n, b) 6 max
{
T
(⌈n

2

⌉
, b
)
, T
(⌊n

2

⌋
+ 1, b

)}
+ O(b log n) (1)

whenever n > 5.
(We will solve this recursion completely formally. Usually one handwaves some of what

follows.)
Consider the function U(n, b) defined inductively by letting

U(3, b) = U(4, b) = max{T (3, b), T (4, b)}

and

U(n, b) = max
{
U
(⌈n

2

⌉
, b
)
, U
(⌊n

2

⌋
+ 1, b

)}
+ C · b log n,

for n > 5, where C > 0 is a constant such that the function g that is O(b log n) in (1) sat-
isfies g(n) 6 Cb log2(n − 1) for every n > 3 (this is possible since O(b log n) is the same
as O(b log2(n− 1))).

We claim that T (n, b) 6 U(n, b) for all n > 3 and all b > 1. This is clearly true if n 6 4.
Suppose then that n > 5 and that T (m, b) 6 U(m, b) for every m < n by induction. Then

since 3 6 dn/2e 6 bn/2c+ 1 6 n− 1, equation 1 implies

T (n, b) 6 max
{
U
(⌈n

2

⌉
, b
)
, U
(⌊n

2

⌋
+ 1, b

)}
+ C · b log2(n− 1) = U(n, b),

4

as desired.
Therefore T (n, b) 6 U(n, b) for all n > 3 and all b > 1. In particular, we have T = O(U).
We now claim that U is non-decreasing in the first coordinate. We clearly have U(3, b) 6

U(4, b). Suppose then that n > 5 and that U(m−1, b) 6 U(m, b) for every m < n by induction.
Then since 3 6 dn/2e 6 bn/2c+ 1 6 n− 1, we have

U(n, b) = max
{
U
(⌈n

2

⌉
, b
)
, U
(⌊n

2

⌋
+ 1, b

)}
+ C · b log2(n− 1)

> max

{
U

(⌈
n− 1

2

⌉
, b

)
, U

(⌊
n− 1

2

⌋
+ 1, b

)}
+ C · b log2(n− 2)

= U(n− 1, b),

since log2 is increasing.
Therefore U(n− 1, b) 6 U(n, b) for every n > 4 and every b > 1.
Let us now prove by induction in k > 1 that U(2k + 1, b) 6 U(3, b) + C · b · k2.
For k = 1, this is trivial. So suppose k > 2 and that the result holds for k − 1. Then we

have

U(2k + 1, b) = max{U(2k−1 + 1, b), U(2k−1 + 1, b)}+ C · b · log2(2
k)

6 U(3, b) + C · b · (k − 1)2 + C · b · k
6 C · b · k2,

as desired.
We now claim that U(n, b) = O(b · (log n)2).
First note that for n = 2k+1 for some k > 1, we have already proved U(n, b) 6 C ·b·(log n)2.
On the other hand, if n > 3 is not of the form 2k + 1 for some k > 1, then there at least

exists k > 1 such that n 6 2k + 1 6 2n. Since U is non-decreasing in the first coordinate, we
get

U(n, b) 6 U(2k + 1, b) 6 C · b · k2 6 C · b · (log(2n− 1))2.

Therefore U(n, b) = O(b · (log n)2), which implies T (n, b) = O(b · (log n)2). /

Exercise 3. A cycle in an undirected simple graph G = (V,E) is a sequence of vertices

(v0, v1, . . . , vk)

with v0 = vk, k > 3 and {vi, vi+1} ∈ E(G), vi 6= vi+1 and vi ∈ V (G) for every i ∈ {0, 1, . . . , k−1}.
In this exercise, we consider that access to a graph G with vertex set V (G) = {1, . . . , n} is

given by the following subroutines.

• The subroutine vertices() returns the number of vertices n in time O(log n) (which is the
bitlength of n).

• The subroutine nextneighbor(i, j) returns the smallest k > j such that {i, k} ∈ E(G) and
returns “NONE” if no such k exists. This subroutine also takes time O(log n).

Design an algorithm that, using the subroutines above, runs in time O(n log n) and returns
a cycle of the graph G if one exists and returns “ACYCLIC” if G does not contain any cycle.
Prove the correctness of your algorithm.

Observation: the graph may have much more than O(n) edges (it can have up to Ω(n2)
edges), so your algorithm cannot inspect all edges of the graph. Note also that your algorithm
can only make at most O(n) calls to the subroutines above.

5

Solution. Let us suppose that V (G) = {1, . . . , n} and consider the following algorithm.

Algorithm 3.1: Detect cycle

1 n← vertices().
2 for i← 1 to n do V [i]← 0
3 Let S be an empty stack.
4 for s← 1 to n do
5 if V [s] = 0 then
6 Push (s, 1) to S.
7 V [s]← 1.
8 while S is not empty do
9 Pop the top element (v, i) from S.

10 i← nextneighbor(v, i).
11 if S is non-empty and i = z for the top element (z, k) of S then
12 i← nextneighbor(v, i).

13 if i 6=“NONE” then
14 if V [i] = 1 then
15 w1 ← v
16 k ← 2
17 while The top element of S is not (i, j) for some j do
18 Pop the top element (w, j) of S.
19 wk ← w
20 k ← k + 1

21 wk ← i
22 return (w1, w2, . . . , wk, v)

23 else
24 Push (v, i + 1) to S.
25 Push (i, 1) to S.
26 V [i]← 1

27 return “ACYCLIC”.

Let us prove the correctness of the algorithm above.
First we claim thatif the elements of the stack S are ((v1, i1), . . . , (vk, ik)) at some point,

then {vj , vj+1} ∈ E(G) for every j ∈ {1, . . . , k − 1}.
This is clearly true if S is empty or has at most one element, so this holds when the algorithm

enters the loop of line 8 for the first time. Note that the only other place in which elements
are pushed on S is in the else line 23, in this case, the algorithm popped (v, i) in line 9 and
ensured through lines 10, 11 and 13 that i is changed to a value such that {v, i} ∈ E(G).
In the else of line 23, the algorithm then pushes (v, i) then (i, 1). If (w, j) is the element
before (v, i) in S, we have {v, w} ∈ E(G) by induction (before v was popped from S) and we
proved that {v, i} ∈ E(G).

Therefore the claim holds.
Let us call a pair (w, j) a representative of v if w = v.
We claim that for every v ∈ V (G), at all points the stack S can have at most one represen-

tative of v.
First note that for the push operation of line 24 to happen, the pop operation of line 9 must

have happened. This means that line 24 can only replace representatives of v, but not add them.
Furthermore, it always replaces them with a representative (v, j) with j > 2. Hence, the only

6

form in which a representative of v enters S without replacing one is if it is of the form (v, 1).
But for (v, 1) to be pushed on S, we must have had V [v] = 0 and it is immediately set to 1
afterward, so it can be pushed on S at most once.

Therefore at all points the stack S can have at most one representative of v.
Note also that since when we replace a representative (v, j) of v by another (v, r) on line 24,

we always have r > j, so it follows that each pair (v, j) ∈ V (G) × V (G) can enter S at most
once.

Note furthermore that the only pairs that can be pushed on S are of the form (v, i+ 1) with
either {v, i} ∈ E(G) or i = 0.

Let us say that v enters S when some representative of v enters S. Let us say that v leaves S
when line 13 tests false in the same iteration when line 9 popped a representative of v (this way
we do not count when representatives of v are replaced).

We claim that for every v ∈ V (G), if v leaves S, then each neighbor of v must have en-
tered S in some iteration before t. Consider all the representatives of v that enter S in or-
der (v, i0), (v, i1), . . . , (v, i`).

We know that i0 = 1 and {v, ir − 1} ∈ E(G) for all r ∈ {1, . . . , `}. But also note that in
the iteration when (v, ir) is pushed on S we also push (ir, 1) on S, the pair (v, ir−1) must have
been popped, and for every ir−1 6 k < ir, we either have {v, k} /∈ E(G) or k is was in the top
of S after the pop of line 9.

Therefore all neighbors of v must enter S before v leaves S.
Let us now prove that if line 14 tests true (i.e., we have V [i] = 1), then there must exist a

representative of i in S.
First note that line 14 can test true only at most once since it has a return statement in its

block. Since V [i] = 1, we know that at some point i must have entered S. But in the iteration
when line 14 tests true, line 13 must have also tested true, which means that v has not yet left S
and since i is a neighbor of v, it follows that i also has not yet left S. Therefore there must
exist a representative of i in S.

Note that this implies that the loop of line 17 actually ends. This along with the fact that
each pair (v, i) can enter S at most once implies that the algorithm always halts.

Note also that if S before this loop was (v1, i1), . . . , (vr, ir) with i = i` and the top be-
ing (v1, i1), then by the end of the loop we have k = `− 1 and vs = ws+1 for all s ∈ {1, . . . , k},
which implies (by our first claim) that (w1, w2, . . . , wk, v) is a cycle of G since w1 = v, wk = i
and {v, i} ∈ E(G).

Therefore, if the algorithm returns a cycle, then it is indeed a cycle in G.
Define now the graphs Gt inductively as follows. We first let G0 be the graph without any

vertices and we follow the execution the execution of Algorithm 3.1 and each time some vertex i
enters S, we define Gt+1 from Gt by adding i to V (Gt) and if v entered S in line 25, we also
add the edge {v, i} to Gt−1.

It is easy to see that at any point the vertices of Gt are precisely the v ∈ V (G) such
that V [v] = 1. Furthermore, since each edge added is an edge of G, the graph Gt is always a
subgraph of G. Also, each edge added is incident to a new vertex, so Gt does not have any
cycles.

But since the maximum number of edges an acyclic graph on n vertices can have is n − 1,
it follows that we only ever define Gt for t 6 n − 1. On the other hand, on each iteration of
the while of line 8, either a vertex leaves S or a vertex enters S, so it must run a total of at
most 2n − 2 times, each of which has time complexity O(log n), except if the loop of line 17
runs. But the loop of line 17 runs at most once in total, and it has complexity O(n log n) (as
the stack never has more than n elements). The loop of line 4 clearly runs n times.

Therefore, we get that the algorithm has time complexity of O(n log n).

7

It remains to prove that if the algorithm returns “ACYCLIC”, then G does not have any
cycle.

Suppose that the algorithm returns “ACYCLIC”, then the test of line 14 is always false.
From the first lines of the loop of line 4, it follows that every vertex must eventually enter S,

hence must eventually enter some Gt. On the other hand, since the loop of line 8 ends without
line 14 testing true, it follows that every vertex must eventually leave S.

We claim that every edge of G is in some Gt.
Fix some edge {u,w} ∈ E(G) and suppose u enters S before w. Consider all the represen-

tatives of w that enter S in order (w, i0), (w, i1), . . . , (w, i`) and let r > 0 be the maximum such
that ir 6 u.

Consider the iteration when (w, ir) is popped from S. At this point u is in S since it entered
before w and can only leave after w leaves (since the representatives of w keep getting replaced
and the representative of u is further down on the stack). Since the test of line 14 is false
and nextneighbor(w, ir) = u, it follows that the test of line 11 must have been true, which
implies that in the beginning of the iteration the two top elements of S where (w, ir) and a
representative of u. This implies that (w, i0) = (w, 1) must have been pushed on line 25 in an
iteration when v = u and i = w, which implies that we added the edge {u,w} to some Gt.

Let T be the maximum such that we defined GT . Since all edges of G are eventually added
to some Gt, it follows that GT = G, but GT does not have any cycle, so G does not have any
cycle as desired. /

8

